Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department



# Academic Program and Course Description Guide

# Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

#### **Concepts and terminology:**

<u>Academic Program Description</u>: The academic program description provides a brief summary of its vision, mission and objectives, including an accurate description of the targeted learning outcomes according to specific learning strategies.

**Course Description:** Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

**<u>Program Vision</u>**: An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

**<u>Program Mission</u>**: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

**Program Objectives:** They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

**Curriculum Structure:** All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

**Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

<u>Teaching and learning strategies</u>: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

#### Academic Program Description Form

University Name: Baghded Faculty/Institute: Engineering Scientific Department: Environment Academic or Professional Program Name: Final Certificate Name: Academic System: Description Preparation Date: File Completion Date:

Signature: Prof. Dr. Ayad A.H. faisa Head of Department Name: Signature:

Scientific Associate Name:

Date:

Date:

The file is checked by: Asst. Prof. Pr. Mean of Altrice Department of Quality Assurance and University Performance Director of the Quality Assurance and University Performance Department:

Date: Signature:

Approval of the Dean

## **TEMPLATE FOR PROGRAMME SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

#### **PROGRAMME SPECIFICATION**

The Department of Environmental Engineering at University of Baghdad - College of Engineering has dedicated faculty applying state of the art technologies, utilizing excellent facilities, small classes, and a supportive staff to help students in the department to reach their academic and career goals. Our graduates, who can be found in agencies and businesses throughout the country, are the best indicator of our dedication to student success. The main department educational program is to convert the student's way of thinking to well organized and more practical in handling engineering problem. The student prepared to face any engineering problem in any field and solves the problem in a scientific engineering manner .In addition, the department provides the student with a principle base of knowledge.

| 1. Teaching Institution           | University of Baghdad/ College of Engineering |
|-----------------------------------|-----------------------------------------------|
| 2. University Department/Centre   | Environmental Engineering Department          |
| 3. Programme Title                | Environmental Engineering                     |
| 4. Title of Final Award           | Bachelor degree in Environmental Engineering  |
| 5. Modes of Attendance offered    | Direct and Electronic                         |
| 6. Accreditation                  |                                               |
| 7. Other external influences      |                                               |
| 8. Date of production/revision of |                                               |
| this specification                |                                               |
| 9. Aims of the Programme          |                                               |

The Department of Environmental Engineering provides opportunities to obtain the knowledge, skills and professional perspective needed for:

1-Graduate Environmental Engineers to serve in all sectors such as Ministries of Environment, Industry, Petroleum, and others. Also, to provide entry to environmental engineering practice and the pursuit of advanced studies.

2-Provide students with a sound foundation in the basic principles and engineering in the field of design and engineering analysis.

3-Develop the theoretical study and skills to enable students to apply these skills in the areas of work such as real solutions to real problems and the ability to make appropriate decisions.

4-Ensure that there is awareness of the importance of environmental protection in all industrial sectors, and develop methodologies to work out, in addition to search for legal ways to apply them.

5-Improve the teaching and research skills of the faculty members to meet international standards and the goals of the Department by joining training programs abroad and continuing professional development through gaining leadership skills in order to provide career success.

6-Improve the abilities of administration and technical supporting staff.

7- Maximum use of resources and potentials of the department.

8-Encourage the cooperation with Universities and Academic Centers in developed countries.

9-Encourage the cooperation with local Governmental Institutes.

10-Encourage the publishing in International Journal with impact factors.

#### 10. Learning Outcomes, Teaching, Learning and Assessment Methods

#### A. Cognitive goals

A1. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

A2. Recognized by our peers as a highly effective leader in the conducted interdisciplinary research and the development of innovative approaches to solve environmental engineering problems.

A3. Attract and welcome graduate students into advanced study and to graduate Master of Science and Doctoral students who possess both breadth and depth in their chosen focus area and are heavily recruited by industry and academia for their academic strengths and their leadership skills.

A4.Continuous development of curricula and studying plans for all stages and levels of studying at the Department to keep up with the latest developments in environmental engineering.

B. The skills goals special to the programme . B1. Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

- B2. Maintain an intellectually challenging, yet supportive and welcoming environment that encourages and enables our students, faculty and staff to achieve their best in a diverse community.
- B3. Create, disseminate and integrate knowledge of engineering, science and technology that expands our environmental engineering knowledge base, which in turn enables the betterment of human society.

B4. Cooperating with related public sector institutions to supply scientific and engineering advice, and preparing different training courses in the development and capacity building for their engineering staffs.

Teaching and Learning Methods

Environmental Engineering Department at the College of Engineering- Baghdad University began as a postgraduate program at the Civil Engineering Department in 1986. In 1997, the present department was established as the Department of Environmental Engineering for postgraduate studies. Undergraduate studies were included in 2005 making the Department a full-fledged one at the College of Engineering.

Comprehensive curricula were prepared for the undergraduate studies to ensure that basic theoretical and applied aspects of environmental engineering are covered. The B.Sc. degree awarded by the department well-prepares its holder for his/her professional or academic career. Graduates are cautioned though that there is no substitute for experience. Their degrees are being gate-passes for the long arduous road engineering capability. Success in achieving this goal will depend not only on hard work but also on proper utilization of acquired engineering principles and knowledge as well as the systematic methodology to problem tackling. This approach results in proactive graduates willing to serve both state and society in various environmental engineering fields.

Assessment methods

Graduate students with high skills

C. Affective and value goals

C2. Provide employers with a well-educated workforce that is ready and able to perform valuable environmental engineering services immediately after graduation.

C3. Encourage the growth of knowledge-based industry and stimulate economic growth in Iraq

C4. Engage in lifelong learning, e.g., through additional formal education, continuing education, professional development, research, and self-study, in order to use state-of-the art knowledge to design safe and effective environmental systems and programs and to provide high quality services to the general public, employers, clients, and other professionals.

Teaching and Learning Methods

Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.

Assessment methods

Graduate students with high skills

| D. General and Transferable Skills (other skills relevant to employability and |
|--------------------------------------------------------------------------------|
| personal development)                                                          |
| $\mathrm{D1.}$ An Ability to apply knowledge of mathematics,                   |
| science, and engineering                                                       |

D2. An ability to design and conduct experiments, as well as to analyze and interpret data

D3. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

D4. An ability to identify, formulate, and solve engineering problems

Teaching and Learning Methods

The use of techniques, skills, and modern engineering tools necessary for engineering practice

Assessment Methods

Graduate students with high skills

| 11. Program | nme Structure               |                           |               |                        |
|-------------|-----------------------------|---------------------------|---------------|------------------------|
| Level/Year  | Course or<br>Module<br>Code | Course or Module<br>Title | Credit rating | 12. Awards and Credits |
| First year  | EnE 100                     |                           | 39            | Bachelor Degree        |
| Second year | EnE 200                     |                           | 38            | Requires (x) credits   |
| Third year  | EnE 300                     |                           | 37            |                        |
| Fourth year | EnE 400                     |                           | 38            |                        |
|             |                             |                           |               |                        |
|             |                             |                           |               |                        |

#### 13. Personal Development Planning

personal development planning, or PDP, encompasses the importance of recording, reflection and planning in helping to manage the learning and development in an efficient and effective way. In the same vein, career development planning focuses on the principles and processes that are involved in effective career development, and examines the benefits of developing and/or updating a career plan during your studies and beyond.

The primary objective for PDP is to improve the capacity of individuals to understand what and how they are learning, and to review, plan and take responsibility for their own learning. This will help students:

- Become more effective, independent and confident self-directed learners
- Understand how they are learning and relate their learning to a wider context
- Improve their general skills for study and career management
- Articulate personal goals and evaluate progress towards their achievement
- Develop a positive attitude to learning throughout life.

#### 14. Admission criteria.

An applicant for admission to an undergraduate program of Environmental Engineering Department, College of Engineering, University of Baghdad, must satisfy the following minimum requirements: - The applicant should have an Iraqi secondary school certificate, or its equivalent, and majored in natural or technological sciences. The students must obtain high rate qualification for admission at

engineering colleges.

-Acceptance is centrally controlled by the Ministry of Higher Education and Scientific Research.

-Distribution of students to the 13 engineering departments of the college of engineering, including the Department of Environmental Engineering, is made according to the capacity plan of the departments and the rating average of the applicants and their will. The capacity plan of the Department of Environmental Engineering in the last three years was 30 students. The number of students accepted in the Department is determined by the College Council based on the capacity and resources of the College.

-An applicant who has graduated from a secondary school outside Iraq must have completed twelve years of combined primary and secondary school studies from a recognized school. He or she is also required to provide an equivalency certificate from the Iraqi Ministry of Education.

#### 15. Key sources of information about the programme

Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering.

Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. Five pressing challenges of the 21st century identify that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.

|                 | Curriculum Skills Map                                                                             |  |                                 |    |    |                   |    |           |    |                  |           |       |         |          |     |             |                                                   |                     |                |
|-----------------|---------------------------------------------------------------------------------------------------|--|---------------------------------|----|----|-------------------|----|-----------|----|------------------|-----------|-------|---------|----------|-----|-------------|---------------------------------------------------|---------------------|----------------|
|                 | please tick in the relevant boxes where individual Programme Learning Outcomes are being assessed |  |                                 |    |    |                   |    |           |    |                  |           |       |         |          |     |             |                                                   |                     |                |
|                 |                                                                                                   |  |                                 |    |    |                   |    |           | Р  | rogra            | mme       | Learı | ning O  | utcon    | ies |             |                                                   |                     |                |
| Year /<br>Level | Tear / Code Title or Option (O)                                                                   |  | Core (C) Title<br>or Option (O) |    |    | edge an<br>tandin |    | S         |    | t-speci<br>tills | fic       | ]     | Thinkin | ıg Skill | S   | Sk<br>relev | eral and<br>ills (or) (<br>vant to en<br>personal | Other sk<br>mployab | ills<br>oility |
|                 |                                                                                                   |  |                                 | A1 | A2 | A3                | A4 | <b>B1</b> | B2 | <b>B3</b>        | <b>B4</b> | C1    | C2      | C3       | C4  | D1          | D2                                                | D3                  | <b>D4</b>      |
| First year      | EnE 100                                                                                           |  |                                 | ×  |    |                   | ×  |           | ×  | ×                |           | ×     |         |          | ×   | ×           | ×                                                 |                     |                |
| Second year     | EnE 200                                                                                           |  |                                 | ×  | ×  |                   | ×  |           | ×  | ×                |           | ×     | ×       | ×        | ×   | ×           | ×                                                 | ×                   | ×              |
| Third year      | EnE 300                                                                                           |  |                                 | ×  | ×  | ×                 | ×  | ×         | ×  | ×                | ×         | ×     | ×       | ×        | ×   | ×           | ×                                                 | ×                   | ×              |
| Fourth year     | EnE 400                                                                                           |  |                                 | ×  | ×  | ×                 | ×  | ×         | ×  | ×                | ×         | ×     | ×       | ×        | ×   | ×           | ×                                                 | ×                   | ×              |
|                 |                                                                                                   |  |                                 |    |    |                   |    |           |    |                  |           |       |         |          |     |             |                                                   |                     |                |
|                 |                                                                                                   |  |                                 |    |    |                   |    |           |    |                  |           |       |         |          |     |             |                                                   |                     |                |
|                 |                                                                                                   |  |                                 |    |    |                   |    |           |    |                  |           |       |         |          |     |             |                                                   |                     |                |

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department



# Academic Program and Course Description Guide

المرحلة الاولى

**202**3

# Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

1

# **Concepts and terminology:**

**Academic Program Description:** The academic program description provides a brief summary of its vision, mission and objectives, including an accurate

description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

**Program Vision:** An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

**<u>Program Mission</u>**: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

**Program Objectives:** They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

**Curriculum Structure:** All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

**Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

<u>Teaching and learning strategies</u>: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

#### Academic Program Description Form

University Name: University of Baghdad Faculty/Institute: College of Engineering

3

Scientific Department: Department of Environmental Engineering Academic or Professional Program Name: English Final Certificate Name: ...... Academic System: Polona program Description Preparation Date: File Completion Date: 16–2–2024

Signature: Head of Department Name: Signature: Scientific Associate Name:

Date:

Date:

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

Date:

Signature:

Approval of the Dean

#### 1. Program Vision

The strategic goal is to raise the readiness of the university formations to be distinguished now and in the future. It further aims to bring about a quantum leap in their strategic performance following international standards within the framework of true citizenship and leadership in its various cognitive, and educational research

roles. It also aims to provide community service, upgrade, and strengthen the position of the university within the framework of universities' international rankings, and within the framework of balancing between contemporaneity with modern trends in higher education and preserving originality represented by adhering to the national constants and values of the country.

#### 2. **Program Mission**

English Language Learning Program *(ELLP)* is to help students from all over the world to achieve their personal and academic goals by providing high–quality, individualized English language instruction in a small–classroom setting and warm, welcoming, inclusive, and friendly cultural environment, while also bringing valuable and diverse international student perspectives to the University.

- 3. Program Objectives
  - 1- The aim of this course is to empower students with the language and life skills
  - 2- The integrated skills approach of the course develops the student's self-confidence to
  - 3- succeed in professional and social encounters within an English-speaking global
  - 4- using language to express knowledge of Environment and health impacts hazardous

#### 4. Program Accreditation

Does the program have program accreditation? And from which agency? None

### 5. Other external influences

Is there a sponsor for the program?

None

| 6. Program Structure |           |              |            |          |  |  |  |
|----------------------|-----------|--------------|------------|----------|--|--|--|
| Program Structure    | Number of | Credit hours | Percentage | Reviews* |  |  |  |
|                      |           |              |            |          |  |  |  |

|                      | Courses |   |       |
|----------------------|---------|---|-------|
| Institution          | 1       | 2 | basic |
| Requirements         |         |   |       |
| College Requirements | 4       | 2 |       |
| Department           | 4       | 2 |       |
| Requirements         |         |   |       |
| Summer Training      | 0       | 0 |       |
| Other                |         |   |       |

\* This can include notes whether the course is basic or optional.

| 7. Program Description |             |             |             |              |  |  |  |  |
|------------------------|-------------|-------------|-------------|--------------|--|--|--|--|
| Year/Level             | Course Code | Course Name |             | Credit Hours |  |  |  |  |
| 2-2024                 | EnE 108     | English     | theoretical | practical    |  |  |  |  |
|                        |             |             | yes         | 0            |  |  |  |  |

| 8. Expected learning                                                                                                                                                           | outcomes of the program                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Knowledge                                                                                                                                                                      |                                                                                              |
| Find and understand<br>information about<br>vocabulary, pronunciation,<br>usage, and grammar in<br>reference texts, online<br>resources, and English<br>language dictionaries, | Become more effective, independent and confident self-directed learners                      |
| Skills                                                                                                                                                                         |                                                                                              |
| The integrated skills<br>approach of the course<br>develops the student's self-<br>understanding                                                                               | Understand texts using effective learning strategies for reading<br>and vocabulary building, |
| using language to express<br>knowledge of Environment<br>and health impacts                                                                                                    | Improve their general skills for study and career management                                 |
| Ethics                                                                                                                                                                         |                                                                                              |

| Develop conversational<br>English skills necessary for<br>becoming a contributing<br>participant in small group<br>activities, large group<br>discussions, and oral<br>presentations, | Articulate personal goals and evaluate progress towards their achievement |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Understand texts using<br>effective learning strategies<br>for reading and vocabulary<br>building,                                                                                    | An ability to identify, formulate, and solve engineering problems         |

#### 9. Teaching and Learning Strategies

Lecture and classroom discussion

#### 10. Evaluation methods

Assignments and exams

#### 11. Faculty

#### Faculty Members

| Academic Rank | Specialization |                                       | Special<br>Requirements<br>(if applicable) | • | Number of the teaching staff |          |  |  |
|---------------|----------------|---------------------------------------|--------------------------------------------|---|------------------------------|----------|--|--|
|               | General        | Special                               |                                            |   | Staff                        | Lecturer |  |  |
| Asst. Prof.   | English        | Linguistics/<br>Discourse<br>Analysis |                                            |   | Current faculty<br>mumber    |          |  |  |

## **Professional Development**

#### Mentoring new faculty members

The orientation for new faculty members is arranged by the department chair and may consist of a few informal meetings and the distribution of a handbook and other supplementary material. In contrast, approximately one in four colleges have formalized and uniform faculty mentorship programs across all departments.

**Professional development of faculty members** 

In-depth programs included both intensive, multi-day offerings in a short course or retreat format, and extended offerings with multiple sessions spaced over a term, a year, or even longer. These formats typically enrolled a cohort of participants who continued for the entire program.

#### 12. Acceptance Criterion

central admission

#### 13. The most important sources of information about the program

-New Headway Plus [Beginner] by John and Liz Soars, Oxford: Oxford University Press (2006),

-Morphy, A.J (1983) English Grammar in use. Cambridge: CUP

https://www.englishclub.com/grammar/verb-tenses.htm

https://www.ego4u.com/en/cram-

www.perfect-english-grammar.com/verb-tenses.htm

https://en.wikipedia.org/wiki/Grammatical\_tense

14. Program Development Plan

The development could be done by consulting more resources and increase lecture length to 3 hours weekly

| Program Skills Outline                |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |
|---------------------------------------|------------|----------|-------|----------|------------------------------------|----|--------|----|----|----|-----------|-----------|----|----|----|----|
|                                       |            |          |       |          | Required program Learning outcomes |    |        |    |    |    |           |           |    |    |    |    |
| Year/Level Course Course<br>Code Name | Year/Level | Basic or | Knov  | vledge   |                                    |    | Skills | 5  |    |    | Ethics    |           |    |    |    |    |
|                                       |            | optiona  |       | optional | A1                                 | A2 | A3     | A4 | B1 | B2 | <b>B3</b> | <b>B4</b> | C1 | C2 | С3 | C4 |
| 2024/level 2                          | EnE 108    | English  | Basic |          |                                    | •  |        |    | •  |    |           | •         |    |    |    |    |
|                                       |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |
|                                       |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |
|                                       |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |
|                                       |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |
|                                       |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |
|                                       |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |
|                                       |            |          |       |          |                                    |    |        |    |    |    |           |           |    |    |    |    |

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

# **Course Description Form**

| 10. Course<br>Week | Structure Hours                        | Required                      | Unit or subject name                                                                                                                                  | Learning                                                                                                                                                            | Evaluation                                                                                                |
|--------------------|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                    |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
| Strategy           |                                        | Lecture an                    | d classroom discussion                                                                                                                                |                                                                                                                                                                     |                                                                                                           |
|                    | ing and L                              | earning Strate                | •                                                                                                                                                     |                                                                                                                                                                     |                                                                                                           |
| Name<br>Email      | e: Asst. Pro<br>: nagham<br>e Objectiv | of. Nagham A<br>.ali@coeg.uol | A1) Find and<br>vocabulary, p<br>in reference to<br>language dict<br>(A2) Develop<br>necessary for<br>participant in<br>discussions, a<br>(A3) Unders | understand informor<br>ronunciation, usa<br>exts, online resou<br>ionaries,<br>o conversational E<br>becoming a contra-<br>small group active<br>and oral presentat | mation about<br>ge, and grammar<br>rces, and English<br>English skills<br>ributing<br>vities, large group |
| 6. Numb<br>2       | oer of Crea                            | lit Hours (Tota               | al) / Number of Units (                                                                                                                               | Total)                                                                                                                                                              |                                                                                                           |
| 5. Availa          | able Atten                             | dance Forms:                  | attendance and Google                                                                                                                                 | e classroom                                                                                                                                                         |                                                                                                           |
| 4. Descr           | iption Pro                             | eparation Dat                 | te:16/2/2024                                                                                                                                          |                                                                                                                                                                     |                                                                                                           |
| 3. Seme            | ster / Yea                             | r: Semester                   |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
| 2. Cours           | se Code:                               | EnE 108                       |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
|                    |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
|                    |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |

|                                                                                                                                                    |                                                                                             | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                      |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|
| Veek 1<br>Veek 2<br>Veek 3<br>Veek 4<br>Veek 5<br>Veek 6<br>Veek 7<br>Veek 8<br>Veek 9<br>eek 10<br>eek 11<br>eek 12<br>eek 13<br>eek 14<br>eek 15 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <ul> <li>(A) Finding and<br/>understanding<br/>information abo<br/>vocabulary,<br/>pronunciation,<br/>usage, and<br/>grammar in<br/>reference texts,<br/>online resources<br/>and English<br/>language<br/>dictionaries,</li> <li>(B) Developing<br/>conversational<br/>English skills<br/>necessary for<br/>becoming a<br/>contributing<br/>participant in sn<br/>group activities,<br/>large group<br/>discussions, and<br/>oral presentatio</li> <li>(C) Understandi<br/>texts using effec<br/>learning structu</li> </ul> | Introduction to the materi<br>Unit 1<br>Unit2,3<br>Unit 4,5<br>Quiz<br>Unit6,7<br>Midterm exam<br>Unit 8,9<br>Quiz<br>General discussion<br>Unit 10,&assignment<br>Unit 11,12<br>Composition Writ<br>discussion<br>Unit13,14<br>English for Spec<br>Purposes | Lecture and classred | Questions<br>during<br>lectures , c<br>exam, preser<br>the class |

#### 11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, essays .... etc

|                 |                 | Time/Num<br>ber  | Weight (Marks) |
|-----------------|-----------------|------------------|----------------|
|                 | Quizzes         | 2                | 20% (20)       |
| Formative       | Assignments     | 1                | 10% (10)       |
| assessment      | Projects / Lab. | 0                | 0              |
|                 | composition     | 1                | 10% (10)       |
| Summative       | Midterm Exam    | 2 hr             | 10% (10)       |
| assessment      | Final Exam      | 2hr              | 50% (50)       |
| Total assessmen | nt              | 100% (100 Marks) |                |

#### 12. Learning and Teaching Resources

| (1) New Headway Plus [Beginner] by<br>John and Liz Soars, Oxford: Oxford<br>University Press (2006),                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>New Headway Plus [Beginner] by Jo and Liz Soars, Oxford: Oxford University Pre (2006),</li> </ul>                                                                                                                                         |
| <ul> <li>(2) Modern scientific articles from the<br/>news related to the students' specialty, and</li> <li>(3) Internet links and videos related to<br/>topics discussed in General English and Engl<br/>for Specific Purposes lectures</li> </ul> |
| Dictionaries and supplies supplementary                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                    |
| https://www.englishclub.com/grammar/verb-<br>tenses.htm         https://www.ego4u.com/en/cram-<br>www.perfect-english-grammar.com/verb-<br>tenses.htm         https://en.wikipedia.org/wiki/Grammatical_t<br>se                                    |
|                                                                                                                                                                                                                                                    |

# MODULE DESCRIPTION FORM

# نموذج وصف المادة الدر اسية

| Module Information<br>معلومات المادة الدر اسبية |                                       |                 |           |                                    |                                                                          |                    |              |
|-------------------------------------------------|---------------------------------------|-----------------|-----------|------------------------------------|--------------------------------------------------------------------------|--------------------|--------------|
| Module Title                                    | P                                     | ıg              |           | Module Delivery                    |                                                                          | elivery            |              |
| Module Type                                     |                                       | Basic           |           |                                    |                                                                          | 🗷 Theory           |              |
| Module Code                                     |                                       | EnE122          |           |                                    |                                                                          | □ Lecture<br>□ Lab |              |
| ECTS Credits                                    |                                       | 5               |           |                                    |                                                                          | I Tutorial         |              |
| SWL (h/sem)                                     |                                       | 125             |           |                                    | <ul><li>Practical</li><li>Seminar</li></ul>                              |                    |              |
| Module Level                                    |                                       | 1               | Semester  | mester of Delivery 2               |                                                                          | 2                  |              |
| Administering De                                | partment                              | Type Dept. Code | College   | College Type College Code          |                                                                          |                    |              |
| Module Leader                                   | Halah ali mee                         | er hussein      | e-mail    | <u>.</u>                           | drhala.a.h@coeng.uobaghdad.edu.iq                                        |                    | ghdad.edu.iq |
| Module Leader's                                 | Acad. Title                           | Lecturer        | Module L  | Module Leader's Qualification Ph.D |                                                                          | Ph.D               |              |
| Module Tutor 1                                  | Raghad Nihad,<br>Eman Jum'a           |                 | e-mail    |                                    | .mohammed1211@coeng.uobaghdad.edu<br>e.younos1211@coeng.uobaghdad.edu.iq |                    |              |
| Peer Reviewer Name                              |                                       |                 | e-mail    |                                    |                                                                          |                    |              |
| Scientific Commit<br>Date                       | Scientific Committee Approval<br>Date |                 | Version N | lumbe                              | er                                                                       | 1.0                |              |

| Relation with other Modules                                    |                                    |          |   |  |  |
|----------------------------------------------------------------|------------------------------------|----------|---|--|--|
|                                                                | العلاقة مع المواد الدراسية الأخرى  |          |   |  |  |
| Prerequisite module     Engineering Drawing     Semester     1 |                                    |          |   |  |  |
| Co-requisites module                                           | Geographic Information Systems GIS | Semester | 7 |  |  |

| Mo                                                               | odule Aims, Learning Outcomes and Indicative Contents<br>أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Module Aims<br>أهداف المادة الدر اسية                            | This unit will enable learners to produce engineering drawings of different components, assemblies and circuits using a variety of sketching and drawing using computer-aided drafting techniques.                                                                                                                                                                                                                                                                                                                                                                                                                |
| Module Learning<br>Outcomes<br>مخرجات التعلم للمادة<br>الدر اسية | <ol> <li>Create technical drawings digitally using Computer Aided Drafting, better<br/>known as CAD, developed and marketed by Autodesk (AutoCAD).</li> <li>Changing a design simply by pushing a button, also drawings can be shared<br/>instantaneously around the world over a computer network.</li> <li>Ability to draw once then copy it hundreds, or even thousands, of times.</li> <li>AutoCAD helps the student to develop, modify, and design better<br/>infrastructure, deliver scalable and feasible building assignments, supervise<br/>production finances, and foresee project results.</li> </ol> |
| Indicative Contents<br>المحتويات الإرشادية                       | The course offers specialization in selected areas of engineering drawing, for introducing the principle of engineering drawing, identifying different types of lines, engineering operations, projections, sections, isometric drawing, and drawing dimensions.                                                                                                                                                                                                                                                                                                                                                  |

| Learning and Teaching Strategies<br>استر اتيجيات التعلم و التعليم |                                                                                                                                                                                                                                                     |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Strategies                                                        | The main strategy that will be adopted in delivering this module is to<br>encourage students' participation questions and in-class discussions, solving<br>exercises, handling assignments while at the same time testing their skills via<br>exams |  |  |  |

| Student Workload (SWL)<br>الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا                                                                            |     |                                                                     |   |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------|---|--|--|
| Structured SWL (h/sem)         48         Structured SWL (h/w)         3           الحمل الدر اسي المنتظم للطالب أسبو عيا         48         3 |     |                                                                     |   |  |  |
| Unstructured SWL (h/sem)<br>الحمل الدر اسي غير المنتظم للطالب خلال الفصل                                                                       | 77  | Unstructured SWL (h/w)<br>الحمل الدراسي غير المنتظم للطالب أسبو عيا | 5 |  |  |
| Total SWL (h/sem)<br>الحمل الدر اسي الكلي للطالب خلال الفصل                                                                                    | 125 |                                                                     |   |  |  |

| Module Evaluation<br>تقييم المادة الدر اسية                                          |                 |      |          |                                     |                                 |  |
|--------------------------------------------------------------------------------------|-----------------|------|----------|-------------------------------------|---------------------------------|--|
| Time/     Weight (Marks)     Week Due     Relevant Learning       Number     Outcome |                 |      |          |                                     |                                 |  |
|                                                                                      | Quizzes         | 3    | 30% (30) | 5, 10, 13                           | (1,2), (2,3,4), (3,4),<br>(3,4) |  |
| Formative<br>assessment                                                              | Assignments     | 10   | 10% (10) | 2, 3, 4, 6, 7, 9,<br>11, 12, 14, 15 | 1,2,3 and 4                     |  |
|                                                                                      | Projects / Lab. |      |          |                                     |                                 |  |
|                                                                                      | Report          |      |          |                                     |                                 |  |
| Summative                                                                            | Midterm Exam    | 2 hr | 10% (10) | 8                                   | 1,2,3 and 4                     |  |
| assessment                                                                           | Final Exam      | 3 hr | 50% (50) | 16                                  | All                             |  |
| Total assessment100% (100                                                            |                 |      |          |                                     |                                 |  |

|         | Delivery Plan (Weekly Syllabus)                                                      |  |  |  |  |
|---------|--------------------------------------------------------------------------------------|--|--|--|--|
|         | المنهاج الأسبوعي النظري                                                              |  |  |  |  |
|         | Material Covered                                                                     |  |  |  |  |
| Week 1  | Introduction to Auto CAD software.                                                   |  |  |  |  |
| Week 2  | Control page in Auto CAD software.                                                   |  |  |  |  |
| Week 3  | The command line and applications.                                                   |  |  |  |  |
| Week 4  | The command circle, rectangle with solving examples.<br>The hash command.            |  |  |  |  |
| Week 5  | Quiz                                                                                 |  |  |  |  |
| Week 6  | The modified command (copy, move) with examples                                      |  |  |  |  |
| Week 7  | The help order in drawing (Grid, trim, Snap, Polar, Object Tracking).                |  |  |  |  |
| Week 8  | Midterm Exam                                                                         |  |  |  |  |
| Week 9  | The command array with types, and ellipse with solving examples.                     |  |  |  |  |
| Week 10 | Quiz                                                                                 |  |  |  |  |
| Week 11 | The command scale and aligned with solving example                                   |  |  |  |  |
| Week 12 | The command layers with solving examples.<br>The command page setup and page layout. |  |  |  |  |
| Week 13 | Quiz                                                                                 |  |  |  |  |
| Week 14 | Types of dimensions with application examples<br>Control page in Auto CAD software.  |  |  |  |  |
| Week 15 | the command text and types<br>Preparing and printing options with examples           |  |  |  |  |

| Learning and Teaching Resources |                                                                                                                                                                                                                                  |                              |  |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|
| مصادر التعلم والتدريس           |                                                                                                                                                                                                                                  |                              |  |  |  |
|                                 | Text                                                                                                                                                                                                                             | Available in the<br>Library? |  |  |  |
| Required Texts                  | Introduction to Auto CAD – 2012 by George Omura, Willey<br>India Publisher                                                                                                                                                       | Yes                          |  |  |  |
| Recommended Texts               | Text Book of Engineering Graphics & AutoCAD by by K<br>Venugopal                                                                                                                                                                 | Yes                          |  |  |  |
| Websites                        | https://www.technicalbookspdf.com/geometric-and-engineerin<br>https://doc.lagout.org/science/0_Computer%20Science/9_Others<br>gineering%20Drawing.pdf<br>https://sctevtodisha.nic.in/wp-content/uploads/2021/03/Engg.l<br>LM.pdf | /Textbook%20of%20En          |  |  |  |

| Grading Scheme<br>مخطط الدرجات |                         |                         |           |                                       |  |
|--------------------------------|-------------------------|-------------------------|-----------|---------------------------------------|--|
| Group                          | Grade                   | المتقدير                | Marks (%) | Definition                            |  |
|                                | A - Excellent           | امتياز                  | 90 - 100  | Outstanding Performance               |  |
| C C                            | <b>B</b> - Very Good    | جيد جدا                 | 80 - 89   | Above average with some errors        |  |
| Success Group<br>(50 - 100)    | C – Good                | ختر                     | 70 - 79   | Sound work with notable errors        |  |
| (30 - 100)                     | <b>D</b> - Satisfactory | متوسط                   | 60 - 69   | Fair but with major shortcomings      |  |
|                                | <b>E</b> - Sufficient   | مقبول                   | 50 - 59   | Work meets minimum criteria           |  |
| Fail Group<br>(0 – 49)         | <b>FX</b> – Fail        | ر اسب (قيد<br>المعالجة) | (45-49)   | More work required but credit awarded |  |
|                                | <b>F</b> – Fail         | راسب                    | (0-44)    | Considerable amount of work required  |  |
|                                |                         |                         |           |                                       |  |

**Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

## **TEMPLATE FOR COURSE SPECIFICATION**

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Dr. Mona Faeq Ali

### **COURSE SPECIFICATION**

Better understanding the relationship between theory and applied math as calculus in the first stage and taking the mathematical problems concerning the soil, water, and air pollution into consideration .

| 1. Teaching Institution                              | University of Baghdad/ College of Engineering |
|------------------------------------------------------|-----------------------------------------------|
| 2. University Department/Centre                      | Environmental Engineering Department          |
| 3. Course title/code                                 | Calculus I                                    |
| 4. Modes of Attendance offered                       | Presence lectures are delivered third a week  |
| 5. Semester/Year                                     | Semester                                      |
| 6. Number of hours tuition (total)                   | 93 hours (6 hours a week)                     |
| 7. Date of production/revision of this specification | 2023-2024                                     |

8. Aims of the Course

- 1- Learning the dependent/independent variables and how they relate to.
- 2- Tracing curves and studying the behavior of functions as well as their extrema.
- 3- Expecting the initial and final values through limits.
- 4- Determining the domain and range of certain functions via different methods.
- 5- Getting the knowledge of how to sketch and/or graph functions using short cut
- 6- Making use of rules of differentiation in solving many extreme problems.
- 7- Learning methods of definite integrals using simpler numerical approaches.

8- Evaluation of arc length, area under the curve, volume and/or surface of rotation.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A-Cognitive goals.

A1. Making the student to be fully aware of how math is being incorporated in A2. Making use of up-to-date criteria dealing with manipulating functions and A3. Using of most advanced electronic devices in graphing complex functions.

B. The skills goals special to the course.

B1- Understanding the nature and behavior of functions in terms of easier
B2. Making proofs of transcendental, rational, irrational polynomial, etc.,
B3- Writing out scientific reports concerning the applications of math in
Environmental Engineering.

Teaching and Learning Methods

Extensive description of case studies and applications regarding the Environmental Engineering studies, Lectures, homework and assignments tests, and exams, class oral conservations, questions and discussions, comparison between theory and applications.

Assessment methods

Homework related to problem solving, student participation through class session, preparation of reports, quizzes, monthly exams, student attendance, and lucrative encouragement.

C. Affective and value goals

C1. Getting optimum values through the applications of extreme functions.

C2. Facilitate the algebraic and solving problems that might be encountered in biochemistry, organic, etc,.

C3. Getting students to trouble shoot and overcome cumbersome solutions in math.

#### Teaching and Learning Methods

Intensive studies of regulations

Assessment Methods

Case studies

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4.An ability to identify, formulate, and solve engineering problems

|      | 10. Course Structure                                                                        |                    |                                                                   |      |            |
|------|---------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------|------|------------|
| Week | Assessment Method                                                                           | Teaching<br>Method | Unit/Module<br>or Topic Title                                     | ILOs | Hours      |
| 1    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. |                    | Review of<br>fundamental<br>concepts                              | 1&2  | 6 (Theory) |
| 2    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  | Presence           | Figuring out<br>functions and<br>equations                        | 1 &2 | 6 (Theory) |
| 3    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Presence           | Graphing<br>functions and<br>getting<br>acquainted on<br>function | 1 &2 | 6 (Theory) |
| 4    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  | Presence           | Solving                                                           | 1 &2 | 6 (Theory) |
| 5    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Presence           | Finding out<br>domain and<br>range of certain<br>functions        | 1 &2 | 6(Theory)  |
| 6    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  |                    | Determination of function limits                                  | 1 &2 | 6 (Theory) |
| 7    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  | Presence           | Knowing the<br>continuity and<br>differentiability                | 1 &2 | 6 (Theory) |

| 8  | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  | Presence | Learning the<br>differentiation,<br>definition and                                                              | 1 &2 | 6 (Theory) |
|----|---------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|------|------------|
| 9  | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Presence | Solving extreme<br>problems using<br>techniques of<br>differentiation                                           | 1 &2 | 6 (Theory) |
| 10 | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Presence | Solving definite<br>integrals and<br>methods of<br>integration                                                  | 1 &2 | 6 (Theory) |
| 11 | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Presence | Evaluation of<br>curve's length,<br>area, volume,<br>and surface area<br>through<br>integration<br>applications | 1 &2 | 6 (Theory) |
|    |                                                                                             |          |                                                                                                                 |      |            |
|    |                                                                                             |          |                                                                                                                 |      |            |
|    |                                                                                             |          |                                                                                                                 |      |            |
|    |                                                                                             |          |                                                                                                                 |      |            |

11. Infrastructure

| 1. Books Required reading:                                                | 1-Calculus, Howard Anton, Drexel University, 5 <sup>th</sup> ed,<br>2019<br>2-Calculus, Muray Spiegel, Shaum's Outline Series, 2011<br>3-Engineering Mathematics, Ken Stroud, 2 <sup>nd</sup> ed. 1987.                                                                                                                                         |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Main references (sources)                                              | Calculus, Thomas and Finney, 7 <sup>th</sup> ed., 2012                                                                                                                                                                                                                                                                                          |
| A- Recommended books<br>and references (scientific<br>journals, reports). | American Journal of Mathematics and any textbooks on calculus                                                                                                                                                                                                                                                                                   |
| B-Electronic references,<br>Internet<br>sites                             | https://www.pdfdrive.com/calculus-and-analytic-geometry-2nd-edition-e31002683.html.<br>https://www.google.com/search?q=calculus+by+howard+anton+11th+edition+pdf+free+download&<br>rlz=1C1SQJL_enIQ924IQ924&oq=calculus+by+Howard++edition+pdf+free+download&aqs=chro<br>me.1.69i57j0i7i30j0i5i7i30j0i8i30l4.32525j1j4&sourceid=chrome&ie=UTF-8 |

# 12. The development of the curriculum plan

The development must take imposing further math courses in 3<sup>rd</sup> and 4<sup>th</sup> stages into consideration as concrete tools for more applications on mathematics.


# المرحلة الأولى

# MODULE DESCRIPTION FORM

# نموذج وصف المادة الدراسية

|                                       | Module Information<br>معلومات المادة الدر اسية |                 |            |            |                                  |                     |
|---------------------------------------|------------------------------------------------|-----------------|------------|------------|----------------------------------|---------------------|
| Module Title                          | Analytical Chemistry                           |                 |            |            | Module De                        | elivery             |
| Module Type                           |                                                | Core            |            |            | 🗷 Theory                         |                     |
| Module Code                           |                                                | EnE111          |            |            | ⊠ Lecture<br>⊠ Lab<br>⊠ Tutorial |                     |
| ECTS Credits                          |                                                | 8               |            |            |                                  |                     |
| SWL (h/sem)                           | 200                                            |                 |            |            | Practical     Seminar            |                     |
| Module Level                          |                                                | 1               | Semester o | f Delivery | elivery 1                        |                     |
| Administering Dep                     | partment                                       | Type Dept. Code | College    | Туре Со    | Type College Code                |                     |
| Module Leader                         | Hala N.                                        | Abdelkareem     | e-mail     | hala.n     | @coeng.uoba                      | aghdad.edu.iq       |
| Module Leader's Acad. Title           |                                                | Lecturer.       | Module Lea | ader's Qu  | ler's Qualification Ph.D         |                     |
| Module Tutor                          | Abeer Khaleel Hashim                           |                 | e-mail     | abeer      | k.hashim@c<br>ad.edu             | oeng.uobaghd<br>.iq |
| Peer Reviewer Name                    |                                                | Name            | e-mail     | E-mail     |                                  |                     |
| Scientific Committee Approval<br>Date |                                                |                 | Version Nu | mber       | 1.0                              |                     |

| Relation with other Modules       |      |          |  |  |
|-----------------------------------|------|----------|--|--|
| العلاقة مع المواد الدراسية الأخرى |      |          |  |  |
| Prerequisite module               | None | Semester |  |  |
| Co-requisites module              | None | Semester |  |  |

| Module Aims, Learning Outcomes and Indicative Contents<br>أهداف المادة الدر اسية ونتائج التعلم والمحتويات الإرشادية |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Module Aims<br>أهداف المادة الدر اسية                                                                               | To be able to apply chemical concepts to solve qualitative and quantitative problems, gaining proficiency and skills through written problems and laboratory work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|                                                                                                                     | 1. Essential analytical skills required by laboratory technicians, researchers and managers of quality control, production control, research and development and analytical techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Module Learning<br>Outcomes                                                                                         | 2. Applicable skills to learn calculation of solution concentration, and expression of analytical results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                     | 3. Learning good laboratory practice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| مخرجات التعلم للمادة الدراسية                                                                                       | 4. Learning the principles of inorganic chemical reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| ,                                                                                                                   | 5. Studying unit conversion molarity, normality and the ppm concentration.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                                     | 6. <b>S</b> tudying gravimetric analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                                                                     | 7. <b>S</b> tudying precipitation reactions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Indicative Contents<br>المحتويات الإرشادية                                                                          | Describes the concepts of analytical chemistry method. The fundamentals, concepts, applications, calculations, instrumentation, solving qualitative and quantitative problems dealing with inorganic mixtures. Review of fundamental concepts, Introduction to Analytical, Chemistry, Good laboratory practice (GLP): reactions, Chemistry of solutions, Type of homogenous mixtures solution properties, Molarity, Normality, Units Conversions, The part per million (ppm) system, Gravimetric Analysis, Precipitation Reactions. This topic is followed by a series of experiments designed to reinforce the concepts developed in texts |  |  |  |

| Learning and Teaching Strategies |                                                                                  |  |
|----------------------------------|----------------------------------------------------------------------------------|--|
| استر اتيجيات التعلم والتعليم     |                                                                                  |  |
| Strategies                       | The main strategy that will be adopted in delivering this module is to encourage |  |

| students' participation in the exercises, while at the same time refining and expanding      |
|----------------------------------------------------------------------------------------------|
| their critical thinking skills. This will be achieved through classes, interactive tutorials |
| and by considering type of simple experiments involving some sampling activities that        |
| are interesting to the students.                                                             |
|                                                                                              |

| Student Workload (SWL)<br>الحمل الدر اسي للطالب محسوب لـ ١٥ اسبو عا     |     |                                                                      |   |
|-------------------------------------------------------------------------|-----|----------------------------------------------------------------------|---|
| Structured SWL (h/sem)<br>الحمل الدر اسي المنتظم للطالب خلال الفصل      | 139 | Structured SWL (h/w)<br>الحمل الدر اسي المنتظم للطالب أسبو عيا       | 9 |
| Unstructured SWL (h/sem)<br>الحمل الدراسي غير المنتظم للطالب خلال الفصل | 61  | Unstructured SWL (h/w)<br>الحمل الدر اسي غير المنتظم للطالب أسبو عيا | 4 |
| Total SWL (h/sem)     200                                               |     |                                                                      |   |

| Module Evaluation<br>تقييم المادة الدر اسية |                 |                 |                  |            |                              |
|---------------------------------------------|-----------------|-----------------|------------------|------------|------------------------------|
|                                             |                 | Time/Nu<br>mber | Weight (Marks)   | Week Due   | Relevant Learning<br>Outcome |
|                                             | Quizzes         | 4               | 10% (10)         | 5,8, 11,14 | 1,2,3,4, 5, 6, &7            |
| Formative                                   | Assignments     | 1               | 10% (10)         | 5          | 1 &2                         |
| assessment                                  | Projects / Lab. | 10              | 10% (10)         | continuous | All                          |
|                                             | Report          | 2               | 10% (10)         | 6, 11      | 5, 6, &7                     |
| Summative                                   | Midterm Exam    | 1               | 10%              | 10         | 1,2,3,4,5 and 6              |
| assessment                                  | Final Exam      | 1               | 50%              | 16         | All                          |
| Total assessment                            |                 |                 | 100% (100 Marks) |            |                              |

|        | Delivery Plan (Weekly Syllabus)<br>المنهاج الاسبوعي النظري                                                                                |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|        | Material Covered                                                                                                                          |  |  |
| Week 1 | Definitions of term, Review of fundamental concepts                                                                                       |  |  |
| Week 2 | Introduction to Analytical, Chemistry                                                                                                     |  |  |
| Week 3 | Good laboratory practice (GLP): Quality Assurance of analytical chemistry, Concentrations of solutions, Concept of mole, Limiting reagent |  |  |
| Week 4 | Stoichiometric calculations(Concentration of solution)                                                                                    |  |  |

| Week 5  | Reduction-Oxidation (Redox) reactions                                   |
|---------|-------------------------------------------------------------------------|
| Week 6  | Reduction-Oxidation (Redox) reactions.                                  |
| Week 7  | Chemistry of solutions, Type of homogenous mixtures solution properties |
| Week 8  | Molarity, Normality,                                                    |
| Week 9  | Molarity, Normality,                                                    |
| Week 10 | Mid. Exam.                                                              |
| Week 11 | Gravimetric Analysis                                                    |
| Week 12 | Gravimetric Analysis                                                    |
| Week 13 | Units Conversions, The part per million (ppm) system,                   |
| Week 14 | Precipitation Reactions                                                 |
| Week 15 | Precipitation Reactions                                                 |
| Week 16 | Preparatory week before the final Exam                                  |

|        | Delivery Plan (Weekly Lab. Syllabus)<br>المنهاج الاسبو عي للمختبر                        |  |  |  |
|--------|------------------------------------------------------------------------------------------|--|--|--|
|        | Material Covered                                                                         |  |  |  |
| Week 1 | Lab 1: Basic tools and operation of analytical chemistry, Safe use of apparatus          |  |  |  |
| Week 2 | Lab 2: Titration principles<br>Neutralization titration and Acid-Base titration.         |  |  |  |
| Week 3 | Lab 3: Determination of Normality, Molarity volumetric calculation.                      |  |  |  |
| Week 4 | Lab 4: Oxidation –Reduction Reactions.                                                   |  |  |  |
| Week 5 | Lab 5: Titration of Precipitation                                                        |  |  |  |
| Week 6 | Lab 6: Titration of strong acid and weak base, Titration of strong acid and strong base. |  |  |  |
| Week 7 | Lab 7: Reaction Mohr Method                                                              |  |  |  |

| Learning and Teaching Resources |                                                                                                                                                                                                                               |          |  |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| مصادر التعلم والتدريس           |                                                                                                                                                                                                                               |          |  |  |
| Availabl<br>Text                |                                                                                                                                                                                                                               |          |  |  |
|                                 |                                                                                                                                                                                                                               | Library? |  |  |
| Required Texts                  | 1. Analytical Chemistry, Gary D. Christian 5th ed. (Text book)                                                                                                                                                                | Yes      |  |  |
| Recommended Texts               | <ol> <li>Simplified procedures for water examination,<br/>Awwa, manual of water supply practices.</li> <li>Fundamentals of Analytical Chemistry, Douglas A.<br/>Skoog, Donald M. West, F. James Holler and Stanley</li> </ol> | Yes      |  |  |

|          | <ul> <li>R. Crouch, eighth edition 2001.</li> <li>3. Methods for Environmental Trace Analysis, Dean, John R. John , Wiley &amp; Sons Ltd, 2003</li> </ul>                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Websites | https://chem.libretexts.org /Bookshelves/Analytical Chemistry/Book%3A_A<br>https://www.sciencedirect.com /book/9780125551601/analytical-chemistry<br>https://www.nature.com /articles/ 062292b0 |

|                             | Grading Scheme<br>مخطط الدرجات |                     |           |                                       |  |  |  |  |
|-----------------------------|--------------------------------|---------------------|-----------|---------------------------------------|--|--|--|--|
| Group                       | Grade                          | التقدير             | Marks (%) | Definition                            |  |  |  |  |
|                             | A - Excellent                  | امتياز              | 90 - 100  | Outstanding Performance               |  |  |  |  |
|                             | <b>B</b> - Very Good           | جيد جدا             | 80 - 89   | Above average with some errors        |  |  |  |  |
| Success Group<br>(50 - 100) | <b>C</b> - Good                | ختر                 | 70 - 79   | Sound work with notable errors        |  |  |  |  |
| (50 - 100)                  | <b>D</b> - Satisfactory        | متوسط               | 60 - 69   | Fair but with major shortcomings      |  |  |  |  |
|                             | E - Sufficient                 | مقبول               | 50 - 59   | Work meets minimum criteria           |  |  |  |  |
| Fail Group                  | <b>FX –</b> Fail               | راسب (قيد المعالجة) | (45-49)   | More work required but credit awarded |  |  |  |  |
| (0 – 49)                    | <b>F</b> – Fail                | راسب                | (0-44)    | Considerable amount of work required  |  |  |  |  |
|                             |                                |                     |           |                                       |  |  |  |  |

**Note:** Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department



# Academic Program and Course Description Guide

المرحلة الاولى

**202**3

# Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

1

# **Concepts and terminology:**

**Academic Program Description:** The academic program description provides a brief summary of its vision, mission and objectives, including an accurate

description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

**Program Vision:** An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

**<u>Program Mission</u>**: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

**Program Objectives:** They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

**Curriculum Structure:** All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

**Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

<u>Teaching and learning strategies</u>: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

# Academic Program Description Form

University Name: University of Baghdad Faculty/Institute: College of Engineering

3

Scientific Department: Department of Environmental Engineering Academic or Professional Program Name: English Final Certificate Name: ...... Academic System: Polona program Description Preparation Date: File Completion Date: 16–2–2024

Signature: Head of Department Name: Signature: Scientific Associate Name:

Date:

Date:

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

Date:

Signature:

Approval of the Dean

### 1. Program Vision

The strategic goal is to raise the readiness of the university formations to be distinguished now and in the future. It further aims to bring about a quantum leap in their strategic performance following international standards within the framework of true citizenship and leadership in its various cognitive, and educational research

roles. It also aims to provide community service, upgrade, and strengthen the position of the university within the framework of universities' international rankings, and within the framework of balancing between contemporaneity with modern trends in higher education and preserving originality represented by adhering to the national constants and values of the country.

#### 2. **Program Mission**

English Language Learning Program *(ELLP)* is to help students from all over the world to achieve their personal and academic goals by providing high–quality, individualized English language instruction in a small–classroom setting and warm, welcoming, inclusive, and friendly cultural environment, while also bringing valuable and diverse international student perspectives to the University.

- 3. Program Objectives
  - 1- The aim of this course is to empower students with the language and life skills
  - 2- The integrated skills approach of the course develops the student's self-confidence to
  - 3- succeed in professional and social encounters within an English-speaking global
  - 4- using language to express knowledge of Environment and health impacts hazardous

# 4. Program Accreditation

Does the program have program accreditation? And from which agency? None

# 5. Other external influences

Is there a sponsor for the program?

None

| 6. Program Structure |           |              |            |          |  |
|----------------------|-----------|--------------|------------|----------|--|
| Program Structure    | Number of | Credit hours | Percentage | Reviews* |  |
|                      |           |              |            |          |  |

|                      | Courses |   |       |
|----------------------|---------|---|-------|
| Institution          | 1       | 2 | basic |
| Requirements         |         |   |       |
| College Requirements | 4       | 2 |       |
| Department           | 4       | 2 |       |
| Requirements         |         |   |       |
| Summer Training      | 0       | 0 |       |
| Other                |         |   |       |

\* This can include notes whether the course is basic or optional.

| 7. Program Description |             |             |              |           |  |  |
|------------------------|-------------|-------------|--------------|-----------|--|--|
| Year/Level             | Course Code | Course Name | Credit Hours |           |  |  |
| 2-2024                 | EnE 108     | English     | theoretical  | practical |  |  |
|                        |             |             | yes          | 0         |  |  |

| 8. Expected learning                                                                                                                                                           | 8. Expected learning outcomes of the program                                                 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Knowledge                                                                                                                                                                      |                                                                                              |  |  |  |  |  |
| Find and understand<br>information about<br>vocabulary, pronunciation,<br>usage, and grammar in<br>reference texts, online<br>resources, and English<br>language dictionaries, | Become more effective, independent and confident self-directed learners                      |  |  |  |  |  |
| Skills                                                                                                                                                                         |                                                                                              |  |  |  |  |  |
| The integrated skills<br>approach of the course<br>develops the student's self-<br>understanding                                                                               | Understand texts using effective learning strategies for reading<br>and vocabulary building, |  |  |  |  |  |
| using language to express<br>knowledge of Environment<br>and health impacts                                                                                                    | Improve their general skills for study and career management                                 |  |  |  |  |  |
| Ethics                                                                                                                                                                         |                                                                                              |  |  |  |  |  |

| Develop conversational<br>English skills necessary for<br>becoming a contributing<br>participant in small group<br>activities, large group<br>discussions, and oral<br>presentations, | Articulate personal goals and evaluate progress towards their achievement |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Understand texts using<br>effective learning strategies<br>for reading and vocabulary<br>building,                                                                                    | An ability to identify, formulate, and solve engineering problems         |

# 9. Teaching and Learning Strategies

Lecture and classroom discussion

## 10. Evaluation methods

Assignments and exams

# 11. Faculty

# Faculty Members

| Academic Rank | Specialization |                                       | Special<br>Requirements/Skills<br>(if applicable) |  | Number of the teaching staff |          |  |
|---------------|----------------|---------------------------------------|---------------------------------------------------|--|------------------------------|----------|--|
|               | General        | Special                               |                                                   |  | Staff                        | Lecturer |  |
| Asst. Prof.   | English        | Linguistics/<br>Discourse<br>Analysis |                                                   |  | Current faculty<br>mumber    |          |  |

# **Professional Development**

#### Mentoring new faculty members

The orientation for new faculty members is arranged by the department chair and may consist of a few informal meetings and the distribution of a handbook and other supplementary material. In contrast, approximately one in four colleges have formalized and uniform faculty mentorship programs across all departments.

**Professional development of faculty members** 

In-depth programs included both intensive, multi-day offerings in a short course or retreat format, and extended offerings with multiple sessions spaced over a term, a year, or even longer. These formats typically enrolled a cohort of participants who continued for the entire program.

#### 12. Acceptance Criterion

central admission

### 13. The most important sources of information about the program

-New Headway Plus [Beginner] by John and Liz Soars, Oxford: Oxford University Press (2006),

-Morphy, A.J (1983) English Grammar in use. Cambridge: CUP

https://www.englishclub.com/grammar/verb-tenses.htm

https://www.ego4u.com/en/cram-

www.perfect-english-grammar.com/verb-tenses.htm

https://en.wikipedia.org/wiki/Grammatical\_tense

14. Program Development Plan

The development could be done by consulting more resources and increase lecture length to 3 hours weekly

|              | Program Skills Outline         |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |
|--------------|--------------------------------|-----------|-------|--------|------------------------------------|----|--------|-----------|-----------|----|--------|----|----|--|--|
|              |                                |           |       |        | Required program Learning outcomes |    |        |           |           |    |        |    |    |  |  |
| Year/Level   | vel Course Course<br>Code Name | Code Name | Knov  | vledge |                                    |    | Skills | 5         |           |    | Ethics |    |    |  |  |
|              | optional                       | A1        | A2    | A3     | A4                                 | B1 | B2     | <b>B3</b> | <b>B4</b> | C1 | C2     | С3 | C4 |  |  |
| 2024/level 2 | EnE 108                        | English   | Basic |        |                                    | •  |        |           | •         |    |        | •  |    |  |  |
|              |                                |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |
|              |                                |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |
|              |                                |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |
|              |                                |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |
|              |                                |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |
|              |                                |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |
|              |                                |           |       |        |                                    |    |        |           |           |    |        |    |    |  |  |

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

# **Course Description Form**

| 10. Course<br>Week                        | Structure Hours                        | Required                      | Unit or subject name                                                                                                                                  | Learning                                                                                                                                                            | Evaluation                                                                                                |  |
|-------------------------------------------|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                                           |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
| Strategy Lecture and classroom discussion |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
|                                           | ing and L                              | earning Strate                | •                                                                                                                                                     |                                                                                                                                                                     |                                                                                                           |  |
| Name<br>Email                             | e: Asst. Pro<br>: nagham<br>e Objectiv | of. Nagham A<br>.ali@coeg.uol | A1) Find and<br>vocabulary, p<br>in reference to<br>language dict<br>(A2) Develop<br>necessary for<br>participant in<br>discussions, a<br>(A3) Unders | understand informor<br>ronunciation, usa<br>exts, online resou<br>ionaries,<br>o conversational E<br>becoming a contra-<br>small group active<br>and oral presentat | mation about<br>ge, and grammar<br>rces, and English<br>English skills<br>ributing<br>vities, large group |  |
| 6. Numb<br>2                              | oer of Crea                            | lit Hours (Tota               | al) / Number of Units (                                                                                                                               | Total)                                                                                                                                                              |                                                                                                           |  |
| 5. Availa                                 | able Atten                             | dance Forms:                  | attendance and Google                                                                                                                                 | e classroom                                                                                                                                                         |                                                                                                           |  |
| 4. Descr                                  | iption Pro                             | eparation Dat                 | te:16/2/2024                                                                                                                                          |                                                                                                                                                                     |                                                                                                           |  |
| 3. Semester / Year: Semester              |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
| 2. Cours                                  | se Code:                               | EnE 108                       |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
|                                           |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
|                                           |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |

|                                                                                                                                                    |                                                                                             | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                      |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|
| Veek 1<br>Veek 2<br>Veek 3<br>Veek 4<br>Veek 5<br>Veek 6<br>Veek 7<br>Veek 8<br>Veek 9<br>eek 10<br>eek 11<br>eek 12<br>eek 13<br>eek 14<br>eek 15 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <ul> <li>(A) Finding and<br/>understanding<br/>information abo<br/>vocabulary,<br/>pronunciation,<br/>usage, and<br/>grammar in<br/>reference texts,<br/>online resources<br/>and English<br/>language<br/>dictionaries,</li> <li>(B) Developing<br/>conversational<br/>English skills<br/>necessary for<br/>becoming a<br/>contributing<br/>participant in sn<br/>group activities,<br/>large group<br/>discussions, and<br/>oral presentatio</li> <li>(C) Understandi<br/>texts using effec<br/>learning structu</li> </ul> | Introduction to the materi<br>Unit 1<br>Unit2,3<br>Unit 4,5<br>Quiz<br>Unit6,7<br>Midterm exam<br>Unit 8,9<br>Quiz<br>General discussion<br>Unit 10,&assignment<br>Unit 11,12<br>Composition Writ<br>discussion<br>Unit13,14<br>English for Spec<br>Purposes | Lecture and classred | Questions<br>during<br>lectures , c<br>exam, preser<br>the class |

# 11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, essays .... etc

|                 |                 | Time/Num<br>ber | Weight (Marks)   |
|-----------------|-----------------|-----------------|------------------|
|                 | Quizzes         | 2               | 20% (20)         |
| Formative       | Assignments     | 1               | 10% (10)         |
| assessment      | Projects / Lab. | 0               | 0                |
|                 | composition     | 1               | 10% (10)         |
| Summative       | Midterm Exam    | 2 hr            | 10% (10)         |
| assessment      | Final Exam      | 2hr             | 50% (50)         |
| Total assessmen | nt              |                 | 100% (100 Marks) |

# 12. Learning and Teaching Resources

| (1) New Headway Plus [Beginner] by<br>John and Liz Soars, Oxford: Oxford<br>University Press (2006),                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>New Headway Plus [Beginner] by Jo and Liz Soars, Oxford: Oxford University Pre (2006),</li> </ul>                                                                                                                                         |
| <ul> <li>(2) Modern scientific articles from the<br/>news related to the students' specialty, and</li> <li>(3) Internet links and videos related to<br/>topics discussed in General English and Engl<br/>for Specific Purposes lectures</li> </ul> |
| Dictionaries and supplies supplementary                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                    |
| https://www.englishclub.com/grammar/verb-<br>tenses.htm         https://www.ego4u.com/en/cram-<br>www.perfect-english-grammar.com/verb-<br>tenses.htm         https://en.wikipedia.org/wiki/Grammatical_t<br>se                                    |
|                                                                                                                                                                                                                                                    |

# **TEMPLATE FOR COURSE SPECIFICATION**

# HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

#### Course Instructor: Dr. Mona Faeq Ali

# **COURSE SPECIFICATION**

This course introduces the description of the environmental geology. Topic covered: Understanding the science of geology. branches of geology ,engineering geology, the earth crust and minerals. Description of common rocks ,environment factors and impacts on rocks. soils formation ,types and physical properties. Understanding mass-volume relations and weight- volume relations. Explain void ratio , porosity ,degree of saturation, Compressive strength and tensile strength.

| 1. Teaching Institution                                                                                             | University of Baghdad/ College of Engineering |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|
| 2. University Department/Centre                                                                                     | Environmental Engineering Department          |  |  |  |  |  |
| 3. Course title/code                                                                                                | Geology                                       |  |  |  |  |  |
| 4. Modes of Attendance offered                                                                                      | 2 days per week presence                      |  |  |  |  |  |
| 5. Semester/Year                                                                                                    | Semester                                      |  |  |  |  |  |
| 6. Number of hours tuition (total)                                                                                  | 64h                                           |  |  |  |  |  |
| 7. Date of production/revision of this specification                                                                | 2023-2024                                     |  |  |  |  |  |
| 8. Aims of the Course                                                                                               |                                               |  |  |  |  |  |
| The main aim of this course are<br>. Full knowledge of geology science, regulations, properties of rocks and soils. |                                               |  |  |  |  |  |
| Provide students with the basic concepts of geology scienc                                                          | e and earth crust profile                     |  |  |  |  |  |

# 9. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals.

A1. After completion of the course students should be able to characterization of geology

A2. analysis of geology constituents

A3. Attract and welcome undergraduate students to our Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

B. The skills goals special to the course.

B1.Understand Principles of general geology

B2 Have students learn about Geology engineering problems and then apply theory to particular

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Describe the general principal involve of Environmental geology

C3.Prepare students for successful careers in environmental engineering

C3. The impact of geology Engineering in solutions

Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

#### Case studies

D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4.An ability to identify, formulate, and solve engineering problems

| 10. Co | 10. Course Structure |      |                                                |                    |                                                                       |  |
|--------|----------------------|------|------------------------------------------------|--------------------|-----------------------------------------------------------------------|--|
| Week   | Hours                | ILOs | Unit/Module or<br>Topic Title                  | Teaching<br>Method | Assessment<br>Method                                                  |  |
| 1      | 2Theory+<br>2Lab.    | 1&2  | Science of geology                             | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2      | 2Theory+<br>2Lab.    | 1&2  | The earth crust and minerals                   | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3      | 2Theory+<br>2Lab.    | 1&2  | Description of the earth crust profile         | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4      | 2Theory<br>+2Lab.    | 1&2  | Description of common rocks                    | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 5      | 2Theory+<br>2Lab.    |      | Description of common rocks                    | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 6      | 2Theory+<br>2Lab.    | 1&2  | Faults                                         | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 7      | 2Theory+<br>2Lab.    | 1&2  | Folds                                          | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 8      | 2Theory+<br>2Lab.    | 1&2  | Joints                                         | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 9      | 2Theory+<br>2Lab.    | 1&2  | Soils formation ,types and physical properties | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 10     | 2Theory+<br>2Lab.    | 1&2  | Soils formation ,types and physical properties | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 11     | 2Theory+<br>2Lab.    | 1&2  | Compressive strength and tensile strength      | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 12 | 2Theory+<br>2Lab. | 1&2 | Compressive strength and<br>tensile strength                                                                | Presence | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|-------------------|-----|-------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|
| 13 | 2Theory+<br>2Lab. | 1&2 | Evaluate deformation and<br>elasticity of rocks , axial and<br>lateral strains and modulus of<br>elasticity | Presence | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 2Theory+<br>2Lab. | 1&2 | Review                                                                                                      | Presence | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 2                 |     | Mid exam                                                                                                    |          |                                                                       |

| 11. Infrastructure                                                  |                                                                                                                                  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:                                          | Douglas A. Skoog, Donald M. West, F. James Holler and Stanley R. Crouch<br>"Fundamentals                                         |
| 2. Main references (sources)                                        | Davis, L., Mackenzie, and Cornwell, A., David. "Introduction to<br>Environmental Engineering" 2nd Edition, McGraw Hill. Inc.1985 |
| A- Recommended books and references (scientific journals, reports). |                                                                                                                                  |
| B-Electronic references, Internet sites                             |                                                                                                                                  |

# 12. The development of the curriculum plan

Full knowledge of science of geology, relationship between the engineering geologist and civil engineering regulations, properties of minerals, and classification

# **TEMPLATE FOR COURSE SPECIFICATION**

# HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# Course Instructor : Dr. Nahla Shadeed Ajeel

# **COURSE SPECIFICATION**

Full knowledge of basics of microbiology, principles of microbiology to the solution of environmental

| 1. Teaching Institution                                                               | University of Baghdad/ College of Engineering |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|
| 2. University Department/Centre                                                       | Environmental Engineering Department          |  |  |  |  |  |
| 3. Course title/code                                                                  | Microbiology                                  |  |  |  |  |  |
| 4. Modes of Attendance offered                                                        | 2 days per week electronic                    |  |  |  |  |  |
| 5. Semester/Year                                                                      | Semester                                      |  |  |  |  |  |
| 6. Number of hours tuition (total)                                                    | 45 h                                          |  |  |  |  |  |
| 7. Date of production/revision of this specification                                  | 2021-2022                                     |  |  |  |  |  |
| 8. Aims of the Course                                                                 |                                               |  |  |  |  |  |
| 1- Students fulfill understanding of the branche                                      | es of Environmental Microbiology.             |  |  |  |  |  |
| 2- Learn and understand basic principles of                                           | microbiology (cell structure)                 |  |  |  |  |  |
| 3- Cell function, microbial, growth and grow                                          |                                               |  |  |  |  |  |
| 4-Prevention of the spread through water of pathogens among humans and other species. |                                               |  |  |  |  |  |
|                                                                                       |                                               |  |  |  |  |  |
|                                                                                       |                                               |  |  |  |  |  |
|                                                                                       |                                               |  |  |  |  |  |
|                                                                                       |                                               |  |  |  |  |  |

# 9. Learning Outcomes, Teaching ,Learning and Assessment Method

#### A-Cognitive goals.

A1. After completion of the course students should be able to treatment of industrial and municipal wastewaters

A2. Biochemical reactions

A3. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

#### B. The skills goals special to the course.

B1.Restoration of industrial, commercial, and government sites contaminated with hazardous materials. B2. Reduction in industrial residuals in order to reduce resource consumption and the production of pollutants requiring disposal. and resource recovery/recycling, transport.

1-

2-

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Microorganisms in the water, air and soil environment

C2. Aspects of bacteria of special interest to environmental engineering

C3. Prepare students for successful careers in environmental engineering

### Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

Case studies

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4.An ability to identify, formulate, and solve engineering problems

| 10. Course Structure |       |                                                |                                                                                                      |                    |                                                                       |  |
|----------------------|-------|------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|--|
| Week                 | Hours | ILOs                                           | Unit/Module or<br>Topic Title                                                                        | Teaching<br>Method | Assessment<br>Method                                                  |  |
| 1                    | 3     | al                                             | General applications in<br>environmental<br>microbiology                                             |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2                    | 3     | from<br>contaminant                            | Protection or restoration<br>of rivers, lakes, estuaries,<br>and coastal waters from<br>contaminants |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3                    | 3     | Organizatio<br>ns of the<br>microbial<br>world | Bacteria                                                                                             |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4                    | 3     | Organizatio<br>ns of the<br>microbial<br>world | Archaea                                                                                              |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 5  | 3 | Organizatio<br>ns of the<br>microbial<br>world | Eukarya (Fungi)                                                                          | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|------------------------------------------------|------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------|
| 6  | 3 | Fungi                                          | Nutritional and<br>environmental<br>requirement for Fungi                                | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7  | 3 | Organizatio<br>ns of the<br>microbial<br>world | Eukarya (Algae )                                                                         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 8  | 3 | Algae                                          | Reproduction and Growth<br>for Algae                                                     | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 9  | 3 | Protozoa                                       | Reproduction and Growth<br>for Protozoa                                                  | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 10 | 3 | ar                                             | Other multicellular<br>organisms such as<br>(Crustacea, Nematodes<br>and Rotifers)       | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 11 | 3 | Viruses                                        | Typical structures of<br>viruses                                                         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 3 | Biochemic<br>al<br>reactions                   | Reactor types                                                                            | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 3 | Reactor<br>configurati<br>ons                  | Several reactor<br>configurations are used<br>for treatment of<br>wastewaters or sludges | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 3 | Fermenter<br>s                                 | Types of Fermenters                                                                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 3 | Sterilizatio<br>n                              | Several types of<br>Sterilization                                                        | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 1. Books Required reading:                                          | 1-Environmental Biotechnology principles and Applications Bruce E.Rittman Perry L.MCCarty.                                                                                                                                                  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Main references (sources)                                        | Microbiology for sanitary Engineers Ross E.<br>McKinney<br>New York, McGraw_ Hill<br>Book Company, INC.1962.                                                                                                                                |
| A- Recommended books and references (scientific journals, reports). | Journals<br>Plant Growth-Promoting Bacteria<br>Facilitate the Growth of Barley and Oats<br>in Salt-Impacted Soil: Implications for<br>Phytoremediation of Saline Soils                                                                      |
| B-Electronic references, Internet sites                             | <ul> <li>Comparison of Petroleum Hydrocarbons Degradation by<br/><i>Klebsiella pneumoniae</i> and <i>Pseudomonas aeruginosa</i>.</li> <li>Biodegradation of petroleum by Klebsiella pneumoniae<br/>isolated from drilling fluid.</li> </ul> |

12. The development of the curriculum plan

The development could concentrate on more applications through taking 2 courses instead of one.

# **TEMPLATE FOR COURSE SPECIFICATION**

# HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# Course Instructor: Asst. prof. Dr. khalid khazzal hummadi COURSE SPECIFICATION

This course is concerned with the identification of organic chemistry, preparation &reactions, and properties. Environmental impact of organic compound, petroleum products, halogenated and dehalogenated solvents, pesticides, environmental significance of petroleum products.

| 1. Teaching Institution                              | University of Baghdad /College of<br>Engineering             |
|------------------------------------------------------|--------------------------------------------------------------|
| 2. University Department/Centre                      | Environmental Engineering Department                         |
| 3. Course title/code                                 | Organic Chemistry EnE                                        |
| 4. Modes of Attendance offered                       | Annual System: They attend in electronic mode 2 hrs. a Week. |
| 5. Semester/Year                                     | Annual                                                       |
| 6. Number of hours tuition (total)                   | 60 hrs./ 2 hrs per week                                      |
| 7. Date of production/revision of this specification | 2019                                                         |
| 8 Aims of the Course                                 |                                                              |

### 8. Aims of the Course

The main objectives of the course are:

- 1. To understand organic chemistry fundamentals,
- 2. To understand the principles, instrumentation and applications of chemical.
- 3. To perform to dealing with organic materials in environmental engineering.

# 9. Learning Outcomes, Teaching ,Learning and Assessment Method

# A- Cognitive goals.

# At the end of the year the students should gain:

A1. Essential dealing with principles organic chemistry results

A2. Studying the groups of organic chemistry.

A3. Preparation of organic components.

A4. Learning the reaction of organic materials.

A5. Study the mechanical of reactions for the organic reactions.

A6. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

# B. The skills goals special to the course

B1. Essential of organic and skills in organic chemistry.

**B2.** Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

# **Teaching and Learning Methods**

- 1- Lectures.
- 2- Homework and Assignments.
- 3- Tests and Exams.
- 4- In-Class Questions and Discussions.
- 5- Connection between Theory and Application.
- 6- In- and Out-Class oral conservations.

# **Assessment Methods**

- 1. Examinations, Tests, and Quizzes.
- 2. Student Engagement during Lectures.

**3.** Responses Obtained from Students, Questionnaire about curriculum and faculty member (Instructor).

- 4. Home work related to problem solving.
- C. Affective and value goals
- C1. Applicable skills to learn the role of organic chemistry in environmental .
- C2. Dealing with organic to solve the pollutants .
- C3. Research and analysis.
- C4. Prepare students for successful careers in environmental engineering.

## Teaching and Learning Methods

Intensive studies of regulations

### Assessment methods

# Case studies

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4. An ability to identify, formulate, and solve engineering problems.

| 10. Cours | 10. Course Structure |        |                                                              |                    |                                                                       |
|-----------|----------------------|--------|--------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| Week      | Hours                | ILOs   | Unit/Module or Topic<br>Title                                | Teaching<br>Method | Assessment Method                                                     |
| 1         | 2 (Theo.)            | 1&2    | Review of fundamental concepts                               | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2         | 2 (Theo.)            | 1 &2   | Good lab. practice                                           | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3         | 2 (Theo.)            | 1 &2   | Classification and<br>identification of<br>organic compounds | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4         | 2 (Theo.)            | 1 &2   | structural<br>characterization of<br>organic compounds       | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5         | 2 (Theo.)            | 1 &2   | Alkanes , definition<br>,names of alkanes<br>components      | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 6         | 2 (Theo.)            | 1,2,&3 | Reactions of alkanes                                         | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7         | 2 (Theo.)            | 1,2,&3 | Preparation of alkanes                                       | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

|    |           |        |                                               |            | <b>.</b>                                                              |
|----|-----------|--------|-----------------------------------------------|------------|-----------------------------------------------------------------------|
| 8  | 2 (Theo.) | 2,3 &4 | Alkenes ,definition ,names<br>of components   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 9  | 2 (Theo.) | 2,3 &4 | Reactions and preparation of alkenes          | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 10 | 2 (Theo.) |        | Examination                                   | Electronic |                                                                       |
| 11 | 2 (Theo.) | 2,3 &4 | Alkynes, definition and names of components   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 2 (Theo.) | 2,3 &4 | Reactions of alkynes components               | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 2 (Theo.) | 2,3 &4 | Aromatic ,definitions<br>,names of components | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 2 (Theo.) | 2,3 &4 | Reactions                                     | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 2 (Theo.) | 2,3 &4 | Preparation of alkynes<br>components          | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 16 | 2 (Theo.) | 2,3 &4 | Alkyl halides                                 | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 17 | 2 (Theo.) | 2,3 &4 | Reaction                                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 18 | 2 (Theo.) | 2,3 &4 | preperation                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 19 | 2 (Theo.) | 2,3 &4 | Alcoholes                                     | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 20 | 2 (Theo.) | 2,3 &4 | Reaction and preprations                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 21 | 2 (Theo.) |        | Examination                                   | Electronic |                                                                       |
| 22 | 2 (Theo.) | 5      | Ethers                                        | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 23 | 2 (Theo.) | 5      | Aldehydes and ketones                         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 24 | 2 (Theo.) | 5             | Carboxylic acids                                       | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|-----------|---------------|--------------------------------------------------------|------------|-----------------------------------------------------------------------|
| 25 | 2 (Theo.) | 5             | Preparations and reactions                             | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 26 | 2 (Theo.) |               | Examination                                            | Electronic |                                                                       |
| 27 | 2 (Theo.) |               | environmental<br>significance of<br>petroleum products | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 28 | 2 (Theo.) |               | selected polymers                                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 29 | 2 (Theo.) | 1,2,3,4<br>&5 | pesticides                                             | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 30 | 2 (Theo.) | 1,2,3,4<br>&5 | industrial intermediate                                | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure                                                  |                                                                                                                                                                                                |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books required reading:                                          | S.Nafls Haider, 2008"Fundamentals of<br>Organic Chemistry". Rajendra printers<br>NewDelhi.                                                                                                     |
| 2. Main references (sources)                                        | Schaum s , 1999"Theory and problems of organic chemistry"Third Edition.<br>McGraw-Hill                                                                                                         |
| A- Recommended books and references (scientific journals, reports). | Smith, 2006" Organic Chemistry". McGraw-Hill<br>Francis A.Carey, 2006" Organic Chemistry". McGraw-Hill                                                                                         |
| B-Electronic references, Internet sites                             | https://chem.libretexts.org/Bookshelves/organic_Chemistry<br>/Book%3A_A<br>https://www.sciencedirect.com/book/9780125551601/orga<br>nic -chemistry<br>https://www.nature.com/articles/062292b0 |

12. The development of the curriculum plan Not to relay on traditional examinations but the creation of reports following the reading of textbooks. These reports are validated and transformed into academic credits for graduation purposes.

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department



# Academic Program and Course Description Guide

المرجلة الثانية

**202**3

# Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

1

# **Concepts and terminology:**

**Academic Program Description:** The academic program description provides a brief summary of its vision, mission and objectives, including an accurate
description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

**Program Vision:** An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

**<u>Program Mission</u>**: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

**<u>Program Objectives</u>**: They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

**Curriculum Structure:** All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

**Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

<u>Teaching and learning strategies</u>: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

### Academic Program Description Form

University Name: University of Baghdad Faculty/Institute: College of Engineering

3

Scientific Department: Department of Environmental Engineering Academic or Professional Program Name: English Final Certificate Name: ...... Academic System: Polona program Description Preparation Date: File Completion Date: 16–2–2024

Signature: Head of Department Name: Signature: Scientific Associate Name:

Date:

Date:

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

Date:

Signature:

Approval of the Dean

#### 1. Program Vision

The strategic goal is to raise the readiness of the university formations to be distinguished now and in the future. It further aims to bring about a quantum leap in their strategic performance following international standards within the framework of true citizenship and leadership in its various cognitive, and educational research

roles. It also aims to provide community service, upgrade, and strengthen the position of the university within the framework of universities' international rankings, and within the framework of balancing between contemporaneity with modern trends in higher education and preserving originality represented by adhering to the national constants and values of the country.

### 2. **Program Mission**

English Language Learning Program *(ELLP)* is to help students from all over the world to achieve their personal and academic goals by providing high–quality, individualized English language instruction in a small–classroom setting and warm, welcoming, inclusive, and friendly cultural environment, while also bringing valuable and diverse international student perspectives to the University.

- 3. Program Objectives
  - 1- The aim of this course is to empower students with the language and life skills
  - 2- The integrated skills approach of the course develops the student's self-confidence to
  - 3- succeed in professional and social encounters within an English-speaking global
  - 4- using language to express knowledge of Environment and health impacts hazardous

# 4. Program Accreditation

Does the program have program accreditation? And from which agency? None

# 5. Other external influences

Is there a sponsor for the program?

None

| 6. Program Structure |           |              |            |          |  |
|----------------------|-----------|--------------|------------|----------|--|
| Program Structure    | Number of | Credit hours | Percentage | Reviews* |  |
|                      |           |              |            |          |  |

|                      | Courses |   |       |
|----------------------|---------|---|-------|
| Institution          | 1       | 2 | basic |
| Requirements         |         |   |       |
| College Requirements | 4       | 2 |       |
| Department           | 4       | 2 |       |
| Requirements         |         |   |       |
| Summer Training      | 0       | 0 |       |
| Other                |         |   |       |

\* This can include notes whether the course is basic or optional.

| 7. Program Description |             |             |             |              |  |
|------------------------|-------------|-------------|-------------|--------------|--|
| Year/Level             | Course Code | Course Name |             | Credit Hours |  |
| 2-2024                 | EnE 108     | English     | theoretical | practical    |  |
|                        |             |             | yes         | 0            |  |

| 8. Expected learning outcomes of the program                                                                                                                                   |                                                                                              |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| Knowledge                                                                                                                                                                      |                                                                                              |  |  |  |  |
| Find and understand<br>information about<br>vocabulary, pronunciation,<br>usage, and grammar in<br>reference texts, online<br>resources, and English<br>language dictionaries, | Become more effective, independent and confident self-directed learners                      |  |  |  |  |
| Skills                                                                                                                                                                         |                                                                                              |  |  |  |  |
| The integrated skills<br>approach of the course<br>develops the student's self-<br>understanding                                                                               | Understand texts using effective learning strategies for reading<br>and vocabulary building, |  |  |  |  |
| using language to express<br>knowledge of Environment<br>and health impacts                                                                                                    | Improve their general skills for study and career management                                 |  |  |  |  |
| Ethics                                                                                                                                                                         |                                                                                              |  |  |  |  |

| Develop conversational<br>English skills necessary for<br>becoming a contributing<br>participant in small group<br>activities, large group<br>discussions, and oral<br>presentations, | Articulate personal goals and evaluate progress towards their achievement |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Understand texts using<br>effective learning strategies<br>for reading and vocabulary<br>building,                                                                                    | An ability to identify, formulate, and solve engineering problems         |

### 9. Teaching and Learning Strategies

Lecture and classroom discussion

### 10. Evaluation methods

Assignments and exams

### 11. Faculty

### Faculty Members

| Academic Rank | Specialization |                                       | Special<br>Requirements/Skills<br>(if applicable) |  | Number of the teaching staff |          |  |
|---------------|----------------|---------------------------------------|---------------------------------------------------|--|------------------------------|----------|--|
|               | General        | Special                               |                                                   |  | Staff                        | Lecturer |  |
| Asst. Prof.   | English        | Linguistics/<br>Discourse<br>Analysis |                                                   |  | Current faculty<br>mumber    |          |  |

# **Professional Development**

#### Mentoring new faculty members

The orientation for new faculty members is arranged by the department chair and may consist of a few informal meetings and the distribution of a handbook and other supplementary material. In contrast, approximately one in four colleges have formalized and uniform faculty mentorship programs across all departments.

**Professional development of faculty members** 

In-depth programs included both intensive, multi-day offerings in a short course or retreat format, and extended offerings with multiple sessions spaced over a term, a year, or even longer. These formats typically enrolled a cohort of participants who continued for the entire program.

### 12. Acceptance Criterion

central admission

### 13. The most important sources of information about the program

-New Headway Plus [Beginner] by John and Liz Soars, Oxford: Oxford University Press (2006),

-Morphy, A.J (1983) English Grammar in use. Cambridge: CUP

https://www.englishclub.com/grammar/verb-tenses.htm

https://www.ego4u.com/en/cram-

www.perfect-english-grammar.com/verb-tenses.htm

https://en.wikipedia.org/wiki/Grammatical\_tense

14. Program Development Plan

The development could be done by consulting more resources and increase lecture length to 3 hours weekly

|              |         |                | F        | Program | Skills | Outl | ine |        |       |           |           |          |     |    |    |
|--------------|---------|----------------|----------|---------|--------|------|-----|--------|-------|-----------|-----------|----------|-----|----|----|
|              |         |                |          |         |        |      | Req | uired  | progr | am Lo     | earnin    | g outcon | nes |    |    |
| Year/Level   | -       | Course<br>Name | Basic or | Knov    | vledge |      |     | Skills | 5     |           |           | Ethics   |     |    |    |
|              |         |                | optional | A1      | A2     | A3   | A4  | B1     | B2    | <b>B3</b> | <b>B4</b> | C1       | C2  | С3 | C4 |
| 2024/level 2 | EnE 108 | English        | Basic    |         |        | •    |     |        | •     |           |           | •        |     |    |    |
|              |         |                |          |         |        |      |     |        |       |           |           |          |     |    |    |
|              |         |                |          |         |        |      |     |        |       |           |           |          |     |    |    |
|              |         |                |          |         |        |      |     |        |       |           |           |          |     |    |    |
|              |         |                |          |         |        |      |     |        |       |           |           |          |     |    |    |
|              |         |                |          |         |        |      |     |        |       |           |           |          |     |    |    |
|              |         |                |          |         |        |      |     |        |       |           |           |          |     |    |    |
|              |         |                |          |         |        |      |     |        |       |           |           |          |     |    |    |

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

# **Course Description Form**

| 10. Course<br>Week                        | Structure Hours                        | Required                      | Unit or subject name                                                                                                                                  | Learning                                                                                                                                                            | Evaluation                                                                                                |  |
|-------------------------------------------|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|
|                                           |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
| Strategy Lecture and classroom discussion |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
|                                           | ing and L                              | earning Strate                | •                                                                                                                                                     |                                                                                                                                                                     |                                                                                                           |  |
| Name<br>Email                             | e: Asst. Pro<br>: nagham<br>e Objectiv | of. Nagham A<br>.ali@coeg.uol | A1) Find and<br>vocabulary, p<br>in reference to<br>language dict<br>(A2) Develop<br>necessary for<br>participant in<br>discussions, a<br>(A3) Unders | understand informor<br>ronunciation, usa<br>exts, online resou<br>ionaries,<br>o conversational E<br>becoming a contra-<br>small group active<br>and oral presentat | mation about<br>ge, and grammar<br>rces, and English<br>English skills<br>ributing<br>vities, large group |  |
| 6. Numb<br>2                              | oer of Crea                            | lit Hours (Tota               | al) / Number of Units (                                                                                                                               | Total)                                                                                                                                                              |                                                                                                           |  |
| 5. Availa                                 | able Atten                             | dance Forms:                  | attendance and Google                                                                                                                                 | e classroom                                                                                                                                                         |                                                                                                           |  |
| 4. Descr                                  | iption Pro                             | eparation Dat                 | te:16/2/2024                                                                                                                                          |                                                                                                                                                                     |                                                                                                           |  |
| 3. Semester / Year: Semester              |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
| 2. Cours                                  | se Code:                               | EnE 108                       |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
|                                           |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |
|                                           |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |  |

|                                                                                                                                                    |                                                                                             | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                      |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|
| Veek 1<br>Veek 2<br>Veek 3<br>Veek 4<br>Veek 5<br>Veek 6<br>Veek 7<br>Veek 8<br>Veek 9<br>eek 10<br>eek 11<br>eek 12<br>eek 13<br>eek 14<br>eek 15 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <ul> <li>(A) Finding and<br/>understanding<br/>information abo<br/>vocabulary,<br/>pronunciation,<br/>usage, and<br/>grammar in<br/>reference texts,<br/>online resources<br/>and English<br/>language<br/>dictionaries,</li> <li>(B) Developing<br/>conversational<br/>English skills<br/>necessary for<br/>becoming a<br/>contributing<br/>participant in sn<br/>group activities,<br/>large group<br/>discussions, and<br/>oral presentatio</li> <li>(C) Understandi<br/>texts using effec<br/>learning structu</li> </ul> | Introduction to the materi<br>Unit 1<br>Unit2,3<br>Unit 4,5<br>Quiz<br>Unit6,7<br>Midterm exam<br>Unit 8,9<br>Quiz<br>General discussion<br>Unit 10,&assignment<br>Unit 11,12<br>Composition Writ<br>discussion<br>Unit13,14<br>English for Spec<br>Purposes | Lecture and classred | Questions<br>during<br>lectures , c<br>exam, preser<br>the class |

### 11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, essays .... etc

|                 |                 | Time/Num<br>ber  | Weight (Marks) |
|-----------------|-----------------|------------------|----------------|
|                 | Quizzes         | 2                | 20% (20)       |
| Formative       | Assignments     | 1                | 10% (10)       |
| assessment      | Projects / Lab. | 0                | 0              |
|                 | composition     | 1                | 10% (10)       |
| Summative       | Midterm Exam    | 2 hr             | 10% (10)       |
| assessment      | Final Exam      | 2hr              | 50% (50)       |
| Total assessmen | nt              | 100% (100 Marks) |                |

### 12. Learning and Teaching Resources

| (1) New Headway Plus [Beginner] by<br>John and Liz Soars, Oxford: Oxford<br>University Press (2006),                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>New Headway Plus [Beginner] by Jo and Liz Soars, Oxford: Oxford University Pre (2006),</li> </ul>                                                                                                                                         |
| <ul> <li>(2) Modern scientific articles from the<br/>news related to the students' specialty, and</li> <li>(3) Internet links and videos related to<br/>topics discussed in General English and Engl<br/>for Specific Purposes lectures</li> </ul> |
| Dictionaries and supplies supplementary                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                    |
| https://www.englishclub.com/grammar/verb-<br>tenses.htm         https://www.ego4u.com/en/cram-<br>www.perfect-english-grammar.com/verb-<br>tenses.htm         https://en.wikipedia.org/wiki/Grammatical_t<br>se                                    |
|                                                                                                                                                                                                                                                    |

# **TEMPLATE FOR COURSE SPECIFICATION**

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Instructor Hayder Muhssin Rashid

# **COURSE SPECIFICATION**

Thorough understanding the relationship between theory and applied math as calculus II in the second stage and taking the mathematical problems concerning the soil, water, and air pollution into consideration.

| 1. Teaching Institution                              | University of Baghdad/ College of Engineering  |
|------------------------------------------------------|------------------------------------------------|
| 2. University Department/Centre                      | Environmental Engineering Department           |
| 3. Course title/code                                 | Calculus II                                    |
| 4. Modes of Attendance offered                       | Electronic lectures are delivered twice a week |
| 5. Semester/Year                                     | Annual                                         |
| 6. Number of hours tuition (total)                   | 80 hours (3 hours a week)                      |
| 7. Date of production/revision of this specification | 2019                                           |

8. Aims of the Course

- 1- Learning the linear algebra through matrices in theory and applications.
- 2- Exploring the hyperbolic functions and their applications within Environmental
- 3- Connecting the cartesian coordinates with these in polar ones.
- 4- Training the students to differentiate more than one variable through partial
- 5- Resolving vector components in mechanics and other applications via vectors
- 6- Making use of multiple integrals in solving problems regarding moments and
- 7- Knowing the convergence/divergence of some infinite series.
- 8- Approximating functions in terms of power series.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals .

A1. Making the student to be fully aware of how math is being incorporated in A2. Making use of up-to-date criteria dealing with manipulating functions and A3. Using of most advanced electronic devices in graphing complex functions.

B. The skills goals special to the course.

B1- Understanding the nature and behavior of functions in terms of easier
B2. Making proofs of hyperbolic, vectors, Lagrange equations, etc.
B3- Writing out scientific reports concerning the applications of math in
Environmental Engineering.

Teaching and Learning Methods

Extensive description of case studies and applications regarding the Environmental Engineering studies, Lectures, homework and assignments tests, and exams, class oral conservations, questions and discussions, comparison between theory and applications.

Assessment methods

Homework related to problem solving, student participation through class session, preparation of reports, quizzes, monthly exams, student attendance, and lucrative encouragement.

C. Affective and value goals

C1. Getting optimum values through the applications of extreme functions using C2. Facilitate the algebraic and solving problems that might be encountered in biochemistry, organic, etc,.

Teaching and Learning Methods

Teaching and Learning Methods

Intensive studies of regulations

| Assessment Methods                                                                                                 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Case studies                                                                                                       |  |  |  |  |
| D. General and rehabilitative transferred skills (other skills relevant to employability and personal development) |  |  |  |  |
| D1. Become more effective, independent and confident self-directed learners                                        |  |  |  |  |
| D2. Improve their general skills for study and career management                                                   |  |  |  |  |
| D3. Articulate personal goals and evaluate progress towards their achievement                                      |  |  |  |  |
| D4. An ability to identify, formulate, and solve engineering problems                                              |  |  |  |  |

|      | 10. Course Structure                                                                        |                    |                                                                     |      |            |
|------|---------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------|------|------------|
| Week | Assessment Method                                                                           | Teaching<br>Method | Unit/Module<br>or Topic Title                                       | ILOs | Hours      |
| 1    | Making questions during<br>the lectures, quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Making an<br>overview of the<br>fundamental<br>concepts             | 1&2  | 2 (Theory) |
| 2    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  | Electronic         | Figuring out<br>linear algebra<br>through matrices                  | 1 &2 | 2 (Theory) |
| 3    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Graphing<br>hyperbolic<br>functions and<br>getting<br>acquainted on | 1 &2 | 2 (Theory) |
| 4    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  | Electronic         | Solving                                                             | 1 &2 | 2 (Theory) |
| 5    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Finding out<br>vectors in two<br>and three space<br>coordinates     | 1 &2 | 2 (Theory) |
| 6    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance                  | Electronic         | Determination of<br>extreme<br>functions via                        | 1 &2 | 2 (Theory) |
| 7    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Knowing the<br>mass, centroid,<br>area, and volume<br>via triple    |      | 2 (Theory) |

| 8 | Making questions during<br>the lectures, quizzes,<br>exams, and attendance<br>in the class. | Electronic | Learning the<br>sequences and<br>power series | 1 &2 | 2 (Theory) |
|---|---------------------------------------------------------------------------------------------|------------|-----------------------------------------------|------|------------|
|   |                                                                                             |            |                                               |      |            |
|   |                                                                                             |            |                                               |      |            |
|   |                                                                                             |            |                                               |      |            |
|   |                                                                                             |            |                                               |      |            |
|   |                                                                                             |            |                                               |      |            |
|   |                                                                                             |            |                                               |      |            |
|   |                                                                                             |            |                                               |      |            |

| 11. Infrastructure         |                                                                                                                       |  |  |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. Books Required reading: | 1-Calculus, Howard Anton, Drexel University, 5 <sup>th</sup> ed, 2019.                                                |  |  |  |  |
|                            | 2-Calculus, Muray Spiegel, Shaum's Outline Series, 2011<br>3-Engineering Mathematics, DASS, 3 <sup>rd</sup> ed. 2014. |  |  |  |  |
|                            |                                                                                                                       |  |  |  |  |
|                            |                                                                                                                       |  |  |  |  |
|                            |                                                                                                                       |  |  |  |  |

| 2. Main references (sources)                                              | Calculus, Thomas and Finney, 7 <sup>th</sup> ed., 2012                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A- Recommended books<br>and references (scientific<br>journals, reports). | American Journal of Mathematics and any textbooks on calculus                                                                                                                                                                                                                                                                                           |
| B-Electronic references,<br>Internet<br>sites                             | https://www.pdfdrive.com/calculus-and-analytic-geometry-2nd-edition-<br>e31002683.html.<br>https://www.google.com/search?q=calculus+by+howard+anton+11th+edi<br>tion+pdf+free+download&rlz=1C1SQJL_enIQ924IQ924&oq=calculus+<br>by+Howard++edition+pdf+free+download&aqs=chrome.1.69i57j0i7i30j<br>0i5i7i30j0i8i30l4.32525j1j4&sourceid=chrome&ie=UTF-8 |

12. The development of the curriculum plan

The development must take imposing further math courses in 3<sup>rd</sup> and 4<sup>th</sup> stages into consideration as concrete tools for more applications on mathematics.



# **TEMPLATE FOR COURSE SPECIFICATION**

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor: Lecturer Dr. Hussein Jabar Khadim

# **COURSE SPECIFICATION**

This course introduces the description of the environmental ecology. Topic covered: Principles of general ecology, Biochemical pathways, Kinetics ecosystem structure and function, Nutrient cycling, Development and application of mass balance for Lake Eutrophication, Preliminary design of waste ponds and constructed wetlands, Transfer of toxic chemicals in food webs

| 1. Teaching Institution                                         | University of Baghdad/ College of Engineering |  |  |  |
|-----------------------------------------------------------------|-----------------------------------------------|--|--|--|
| 2. University Department/Centre                                 | Environmental Engineering Department          |  |  |  |
| 3. Course title/code                                            | Ecology                                       |  |  |  |
| 4. Modes of Attendance offered                                  | 2 days per week electronic                    |  |  |  |
| 5. Semester/Year                                                | Semester                                      |  |  |  |
| 6. Number of hours tuition (total)                              | 30 h                                          |  |  |  |
| 7. Date of production/revision of this specification            |                                               |  |  |  |
| 8. Aims of the Course                                           |                                               |  |  |  |
| The main aim                                                    | of this course are                            |  |  |  |
| • Introduce to student the basic concept of Ecology             |                                               |  |  |  |
| Describe the general principal involve of Environmental ecology |                                               |  |  |  |
|                                                                 |                                               |  |  |  |
|                                                                 |                                               |  |  |  |

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals.

A1. After completion of the course students should be able to characterization of ecology

A2. analysis of ecology constituents including QA/QC issues.

A3. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

B. The skills goals special to the course.

B1.Understand Principles of general ecology

B2. Development and application of mass balance for lake eutrophication

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Describe the general principal involve of Environmental ecology

C2. Economics of the onsite vs. offsite waste management options

C3.Prepare students for successful careers in environmental engineering

Teaching and Learning Methods

Intensive studies of regulations

| Assessment methods                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------|--|
| Case studies                                                                                                       |  |
| D. General and rehabilitative transferred skills (other skills relevant to employability and personal development) |  |
| D1. Become more effective, independent and confident self-directed learners                                        |  |
| D2. Improve their general skills for study and career management                                                   |  |
| D3. Articulate personal goals and evaluate progress towards their achievement                                      |  |
| D4.An ability to identify, formulate, and solve engineering problems                                               |  |
|                                                                                                                    |  |

| 10. Course Structure |           |                          |                                                                  |                    |                                                                       |
|----------------------|-----------|--------------------------|------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| Week                 | Hour<br>s | ILOs                     | Unit/Module or<br>Topic Title                                    | Teaching<br>Method | Assessment<br>Method                                                  |
| 1                    | 2         | Definition of<br>ecology | Principles of general<br>ecology                                 | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2                    | 2         | Definition of<br>ecology | Principles of general<br>ecology                                 | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3                    | 2         | Energy flow              | Biochemical pathways                                             | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4                    | 2         | Energy flow              | Biochemical pathways                                             | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5                    | 2         | Mass flow                | Kinetics ecosystem structure and function                        | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 6                    | 2         | Nutrient<br>cycling      | Kinetics ecosystem structure and                                 | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7                    | 2         |                          | Nutrient cycling                                                 | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 8                    | 2         | Nutrient<br>cycling      | Nutrient cycling                                                 | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 9                    | 2         | Nutrient<br>cycling      | Development and<br>application of mass<br>balance for lake       | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 10                   | 2         | mass balance             | Development and<br>application of mass<br>balance for lake       | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 11                   | 2         | mass balance             | Preliminary design of<br>waste ponds and<br>constructed wetlands | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 12 | 2 | mass balance         | Preliminary design of<br>waste ponds and<br>constructed wetlands | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|----------------------|------------------------------------------------------------------|------------|-----------------------------------------------------------------------|
| 13 | 2 | Methods of treatment | Transfer of toxic chemicals<br>in food webs                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 2 |                      | Review                                                           | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 2 |                      | Mid exam                                                         | Electronic |                                                                       |

| 11. Infrastructure                                                  |                                                                                                                                                       |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:                                          | <ul> <li>Introduction to Environmental Engineering and<br/>Science by G. Masters and W. Ela</li> <li>Environmental Engineering by G. Kiely</li> </ul> |
| 2. Main references (sources)                                        | <ul> <li>Fundamental of Ecology by P. Odum and W.<br/>Barrett</li> </ul>                                                                              |
| A- Recommended books and references (scientific journals, reports). | Journals<br>1. International Journal of Ecology<br>2. Ecology                                                                                         |
| B-Electronic references, Internet sites                             | https://www.epa.gov<br>https://youtube.com                                                                                                            |

# 12. The development of the curriculum plan

The development could concentrate on more applications and mathematical modeling through taking 2 courses instead of one

# **TEMPLATE FOR COURSE SPECIFICATION**

### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

### Course Instructor: Dr. Mona Faeq Ali

### **COURSE SPECIFICATION**

This course introduces the description of the environmental geology. Topic covered: Understanding the science of geology. branches of geology ,engineering geology, the earth crust and minerals. Description of common rocks ,environment factors and impacts on rocks. soils formation ,types and physical properties. Understanding mass-volume relations and weight- volume relations. Explain void ratio , porosity ,degree of saturation, Compressive strength and tensile strength.

| 1. Teaching Institution                                                                                             | University of Baghdad/ College of Engineering |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|
| 2. University Department/Centre                                                                                     | Environmental Engineering Department          |  |  |  |
| 3. Course title/code                                                                                                | Geology                                       |  |  |  |
| 4. Modes of Attendance offered                                                                                      | 2 days per week presence                      |  |  |  |
| 5. Semester/Year                                                                                                    | Semester                                      |  |  |  |
| 6. Number of hours tuition (total)                                                                                  | 64h                                           |  |  |  |
| 7. Date of production/revision of this specification                                                                | 2023-2024                                     |  |  |  |
| 8. Aims of the Course                                                                                               |                                               |  |  |  |
| The main aim of this course are<br>. Full knowledge of geology science, regulations, properties of rocks and soils. |                                               |  |  |  |
| Provide students with the basic concepts of geology science and earth crust profile                                 |                                               |  |  |  |

### 9. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals.

A1. After completion of the course students should be able to characterization of geology

A2. analysis of geology constituents

A3. Attract and welcome undergraduate students to our Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

B. The skills goals special to the course.

B1.Understand Principles of general geology

B2 Have students learn about Geology engineering problems and then apply theory to particular

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Describe the general principal involve of Environmental geology

C3.Prepare students for successful careers in environmental engineering

C3. The impact of geology Engineering in solutions

Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

#### Case studies

D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4.An ability to identify, formulate, and solve engineering problems

| 10. Co | 10. Course Structure |      |                                                |                    |                                                                       |  |
|--------|----------------------|------|------------------------------------------------|--------------------|-----------------------------------------------------------------------|--|
| Week   | Hours                | ILOs | Unit/Module or<br>Topic Title                  | Teaching<br>Method | Assessment<br>Method                                                  |  |
| 1      | 2Theory+<br>2Lab.    | 1&2  | Science of geology                             | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2      | 2Theory+<br>2Lab.    | 1&2  | The earth crust and minerals                   | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3      | 2Theory+<br>2Lab.    | 1&2  | Description of the earth crust profile         | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4      | 2Theory<br>+2Lab.    | 1&2  | Description of common rocks                    | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 5      | 2Theory+<br>2Lab.    |      | Description of common rocks                    | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 6      | 2Theory+<br>2Lab.    | 1&2  | Faults                                         | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 7      | 2Theory+<br>2Lab.    | 1&2  | Folds                                          | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 8      | 2Theory+<br>2Lab.    | 1&2  | Joints                                         | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 9      | 2Theory+<br>2Lab.    | 1&2  | Soils formation ,types and physical properties | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 10     | 2Theory+<br>2Lab.    | 1&2  | Soils formation ,types and physical properties | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 11     | 2Theory+<br>2Lab.    | 1&2  | Compressive strength and tensile strength      | Presence           | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 12 | 2Theory+<br>2Lab. | 1&2 | Compressive strength and<br>tensile strength                                                                | Presence | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|-------------------|-----|-------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------|
| 13 | 2Theory+<br>2Lab. | 1&2 | Evaluate deformation and<br>elasticity of rocks , axial and<br>lateral strains and modulus of<br>elasticity | Presence | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 2Theory+<br>2Lab. | 1&2 | Review                                                                                                      | Presence | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 2                 |     | Mid exam                                                                                                    |          |                                                                       |

| 11. Infrastructure                                                  |                                                                                                                                  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:                                          | Douglas A. Skoog, Donald M. West, F. James Holler and Stanley R. Crouch<br>"Fundamentals                                         |
| 2. Main references (sources)                                        | Davis, L., Mackenzie, and Cornwell, A., David. "Introduction to<br>Environmental Engineering" 2nd Edition, McGraw Hill. Inc.1985 |
| A- Recommended books and references (scientific journals, reports). |                                                                                                                                  |
| B-Electronic references, Internet sites                             |                                                                                                                                  |

# 12. The development of the curriculum plan

Full knowledge of science of geology, relationship between the engineering geologist and civil engineering regulations, properties of minerals, and classification

# **TEMPLATE FOR COURSE SPECIFICATION**

### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# Course Instructor: dr.halla ali COURSE SPECIFICATION

The course offers specialization in selected areas of engineering hydrology. It addresses classification and evaluation of hydrological data, such as: water cycle, measurements, and variation of metrological data, humidity, wind, precipitation, streamflow and unit hydrograph, groundwater flow, mechanism of transport pollutants, and transportation of contaminants through soil particles.

| 1. Teaching Institution                              | University of Baghdad /College of<br>Engineering             |
|------------------------------------------------------|--------------------------------------------------------------|
| 2. University Department/Centre                      | Environmental Engineering Department                         |
| 3. Course title/code                                 | Engineering Hydrology EnE                                    |
| 4. Modes of Attendance offered                       | Annual System: They attend in electronic mode 2 hrs. a Week. |
| 5. Semester/Year                                     | Annual                                                       |
| 6. Number of hours tuition (total)                   | 60 hrs./ 2 hrs per week                                      |
| 7. Date of production/revision of this specification | 2019                                                         |
| Q Alexan (Caller Channel                             |                                                              |

### 8. Aims of the Course

The main objectives of the course are:

- 1. To understand hydrology fundamentals,
- 2. To understand the principles, instrumentation and applications of hydrology.
- 3. To perform analysis and calculations of hydrological data.

### 9. Learning Outcomes, Teaching, Learning and Assessment Method

# A- Cognitive goals.

# At the end of the year, the students should gain:

A1. Ability to solve hydrology problems by different techniques and skills in calculation tables and curves for representing hydrological results.

A2. Studying humidity.

A3. Measuring average precipitation over catchment area.

A4. Finding the missing data.

A5. Groundwater flow direction and the expectation of the transportation of pollutants through soil

A6. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations and possess the knowledge and skills required for a wide range of careers and career changes.

# B. The skills goals special to the course

**B1.** Ability to solve hydrology problems by different techniques and skills in calculation tables and curves for representing hydrological results.

**B2.** Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

# **Teaching and Learning Methods**

- 1- Lectures.
- 2- Homework and Assignments.
- 3- Tests and Exams.
- 4- In-Class Questions and Discussions.
- 5- Connection between Theory and software.
- 6- In- and Out-Class oral conservations.

# **Assessment Methods**

1. Examinations, Tests, and Quizzes.

2. Student Engagement during Lectures.

**3**. Responses Obtained from Students, Questionnaire about curriculum and faculty member (Instructor).

4. Home work related to problem-solving.

C. Affective and value goals

C1. Practical skills to learn to calculate average precipitation, missing data, surface runoff, and groundwater movement.

C2. Research and analytical techniques.

C3. Prepare students for successful careers in environmental engineering.

### Teaching and Learning Methods

Intensive studies of regulations

### Assessment methods

Case studies

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Become more effective, independent, and confident, self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4. An ability to identify, formulate, and solve engineering problems.

| 10. Cours | 10. Course Structure |        |                                                       |                    |                                                                       |
|-----------|----------------------|--------|-------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| Week      | Hours                | ILOs   | Unit/Module or Topic<br>Title                         | Teaching<br>Method | Assessment Method                                                     |
| 1         | 2 (Theo.)            | 1&2    | Review of fundamental concepts                        | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2         | 2 (Theo.)            | 1 &2   | Water cycle                                           | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3         | 2 (Theo.)            | 1 &2   | Measurements and<br>variation of metrological<br>data | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4         | 2 (Theo.)            | 1 &2   | Vapor pressure                                        | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5         | 2 (Theo.)            | 1 &2   | Humidity                                              | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 6         | 2 (Theo.)            | 1,2,&3 | Humidity                                              | Electronic         | Questions during the lectures ,quiz, exam,                            |

|    |                   |        |                            |            | present in the class                       |
|----|-------------------|--------|----------------------------|------------|--------------------------------------------|
|    | 2 (Theo.)         |        | wind                       | Electronic | Questions during the                       |
| 7  | , , ,             | 1,2,&3 |                            |            | lectures ,quiz, exam,                      |
|    |                   |        |                            |            | present in the class                       |
|    | 2 (Theo.)         |        |                            | Electronic | Questions during the                       |
| 8  | ~ /               | 2,3 &4 | Exam                       |            | lectures ,quiz, exam,                      |
|    |                   |        |                            |            | present in the class                       |
|    | 2 (Theo.)         |        |                            | Electronic | Questions during the                       |
| 9  |                   | 2,3 &4 | Precipitation missing data |            | lectures ,quiz, exam,                      |
|    |                   |        |                            |            | present in the class                       |
| 10 | 2 (Theo.)         |        | Precipitation calculation  | Electronic |                                            |
|    | 2 (Theo.)         |        | -                          | Electronic | Questions during the                       |
| 11 | ~ /               | 2,3 &4 | Precipitation calculation  |            | lectures ,quiz, exam,                      |
|    |                   |        | -                          |            | present in the class                       |
|    | 2 (Theo.)         |        | Precipitation calculation  | Electronic | Questions during the                       |
| 12 |                   | 2,3 &4 | -                          |            | lectures, quiz, exam,                      |
|    |                   | _,     |                            |            | present in the class                       |
|    | 2 (Theo.)         |        | Precipitation calculation  | Electronic | Questions during the                       |
| 13 | 2 (11100.)        | 2,3 &4 | Treepitation calculation   | Lieettoine | lectures ,quiz, exam,                      |
| 15 |                   | 2,5 &1 |                            |            | present in the class                       |
|    | 2 (Theo.)         |        | Exam                       | Electronic | Questions during the                       |
| 14 | 2 (111001)        | 2,3 &4 |                            | Lieeuonie  | lectures ,quiz, exam,                      |
|    |                   | _,     |                            |            | present in the class                       |
|    | 2 (Theo.)         |        | Streamflow measurements    | Electronic | Questions during the                       |
| 15 | · · ·             | 2,3 &4 |                            |            | lectures ,quiz, exam,                      |
|    |                   |        |                            |            | present in the class                       |
|    | 2 (Theo.)         |        | Streamflow routing         | Electronic | Questions during the                       |
| 16 |                   | 2,3 &4 |                            |            | lectures ,quiz, exam,                      |
|    |                   |        |                            |            | present in the class                       |
|    | 2 (Theo.)         |        | Streamflow routing         | Electronic | Questions during the                       |
| 17 |                   | 2,3 &4 |                            |            | lectures, quiz, exam,                      |
|    |                   |        |                            |            | present in the class                       |
| 10 | 2 (Theo.)         |        | Streamflow                 | Electronic | Questions during the                       |
| 18 |                   | 2,3 &4 |                            |            | lectures ,quiz, exam,                      |
|    | 0 (17)            |        | <b>G</b> , <b>G</b>        |            | present in the class                       |
| 10 | 2 (Theo.)         | 22.04  | Streamflow measurements    | Electronic | Questions during the                       |
| 19 |                   | 2,3 &4 |                            |            | lectures ,quiz, exam,                      |
|    | $(T_{1}, \ldots)$ |        | Enser                      | Electroni  | present in the class                       |
| 20 | 2 (Theo.)         | 22 8-1 | Exam                       | Electronic | Questions during the                       |
| 20 |                   | 2,3 &4 |                            |            | lectures ,quiz, exam,                      |
| 21 | 2 (Theo)          |        | Groundwater                | Electronic | present in the class                       |
| 21 | 2 (Theo.)         |        | Ground water               |            | Questions during the                       |
| 22 | 2 (Theo.)         | 5      | Ground water               | Electronic | Questions during the lectures ,quiz, exam, |
|    |                   |        |                            |            | iectures ,quiz, exam,                      |

|    |           |               |                                             |            | present in the class                                                  |
|----|-----------|---------------|---------------------------------------------|------------|-----------------------------------------------------------------------|
| 23 | 2 (Theo.) | 5             | Ground water direction                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 24 | 2 (Theo.) | 5             | Transport the contaminant<br>in groundwater | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 25 | 2 (Theo.) | 5             | Transport models                            | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 26 | 2 (Theo.) |               | Exam                                        | Electronic |                                                                       |
| 27 | 2 (Theo.) |               | Environmental sampling                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 28 | 2 (Theo.) |               | Environmental sampling                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 29 | 2 (Theo.) | 1,2,3,4<br>&5 | Applications                                | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 30 | 2 (Theo.) | 1,2,3,4<br>&5 | Applications                                | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure                                                  |                                                                                                                             |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1. Books required reading:                                          | <ol> <li>Hydrology for Engineers by "Ray K.<br/>Linsley, Max A. Kohler and Joseph L. H.<br/>Paulhus" 2nd edition</li> </ol> |  |  |  |
| 3. Main references (sources)                                        | 2. Unsaturated zone hydrology for scientists and engineers by James A. Tindall                                              |  |  |  |
| A- Recommended books and references (scientific journals, reports). | 1. Unsaturated zone hydrology for scientists and engineers by James A. Tindall                                              |  |  |  |

| B-Electronic references, Internet |  |
|-----------------------------------|--|
| sites                             |  |

https://theconstructor.org/waterresources/hydrology/engineeringhydrology-scope-applications/37597/

12. The development of the curriculum plan Not to relay on traditional examinations but the creation of reports following the reading of textbooks. These reports are validated and transformed into academic credits for graduation purposes.

# **TEMPLATE FOR COURSE SPECIFICATION**

# HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

### **Course Instructor: Lecturer Dr. Hussein Jabar Khadim COURSE SPECIFICATION**

The course offers specialization in selected areas of Mechanical Engineering. The aim of the programme is to give graduates the knowledge and skills which a professional mechanical engineer will need in order to work effectively in a modern engineering environment.

| 1. Teaching Institution                              | University of Baghdad /College of<br>Engineering             |
|------------------------------------------------------|--------------------------------------------------------------|
| 2. University Department/Centre                      | Environmental Engineering Department                         |
| 3. Course title/code                                 | Static and Strength of Material EnE                          |
| 4. Modes of Attendance offered                       | Annual System: They attend in electronic mode 3 hrs. a Week. |
| 5. Semester/Year                                     | Annual                                                       |
| 6. Number of hours tuition (total)                   | 90 hrs./ 3 hrs per week                                      |
| 7. Date of production/revision of this specification | 2019                                                         |

### 8. Aims of the Course

The main objectives of the course are:

1. To understand Mechanical Engineering and strength of material fundamentals,

2. To understand the principles, instrumentation and applications of Static and strength of material.

3. To perform analysis and calculations with ease.

### 9. Learning Outcomes, Teaching ,Learning and Assessment Method

# A- Cognitive goals.

# At the end of the year the students should gain:

A1. Identification of force, types of force; systems of force resolution of a twodimensional force into component

A2. Identification of moments of a force, the couple and torque

A3. Static equilibrium; "free body" principle applied to solids.

A4. Second moment of area; moment of inertia Strength of materials.

A5. Direct stress and strain; properties of section;;; stresses and strains in pinjointed frames

A6.Bending and torsion simple beams and thin cylinders

# B. The skills goals special to the course

**B1.** Essential analytical techniques and skills in calculation of Mechanical Engineering problems.

**B2.** Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

### **Teaching and Learning Methods**

- 1- Lectures.
- 2- Homework and Assignments.
- 3- Tests and Exams.
- 4- In-Class Questions and Discussions.
- 5- Connection between Theory and Application.
- 6- In- and Out-Class oral conservations.

### **Assessment Methods**

- 1. Examinations, Tests, and Quizzes.
- 2. Student Engagement during Lectures.

**3**. Responses Obtained from Students, Questionnaire about curriculum and faculty member (Instructor).

- 4. Home work related to problem solving.
- C. Affective and value goals
- C1. Applicable skills to learn calculation of problem solution.
- C2. Mathematical calculation.
- C3. Research and analytical techniques.
- C4. Prepare students for successful careers in environmental engineering.

Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

#### Case studies

D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4. An ability to identify, formulate, and solve engineering problems.

| 10. Cou | 10. Course Structure |        |                                    |                    |                                                                    |
|---------|----------------------|--------|------------------------------------|--------------------|--------------------------------------------------------------------|
| Week    | Hours                | ILOs   | Unit/Module or<br>Topic Title      | Teaching<br>Method | Assessment Method                                                  |
| 1       | 3 (Theo.)            | 1&2    | Principles of statics              | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 2       | 3 (Theo.)            | 1 &2   | Resultants of force systems        | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 3       | 3 (Theo.)            | 1 &2   | Resultants of force systems        | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 4       | 3 (Theo.)            | 1 &2   | Equilibrium of force systems       | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 5       | 3 (Theo.)            | 1 &2   | Equilibrium of force systems       | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 6       | 3 (Theo.)            | 1,2,&3 | Friction                           | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 7       | 3 (Theo.)            | 1,2,&3 | Friction                           | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 8       | 3 (Theo.)            | 2,3 &4 | Analysis of trusses                | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 9       | 3 (Theo.)            | 2,3 &4 | Analysis of trusses                | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 10      | 3 (Theo.)            |        | Forces in space                    | Electronic         |                                                                    |
| 11      | 3 (Theo.)            | 2,3 &4 | Centroids and moment of inertia    | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 12      | 3 (Theo.)            | 2,3 &4 | Centroids and moment<br>of inertia | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |
| 13      | 3 (Theo.)            | 2,3 &4 | Centroids and moment of inertia    | Electronic         | Questions during the lectures<br>,quiz, exam, present in the class |

| 14 | 3 (Theo.) | 2,3 &4        | Review                                   | Electronic |                                                                    |
|----|-----------|---------------|------------------------------------------|------------|--------------------------------------------------------------------|
| 15 | 3 (Theo.) | 2,3 &4        | Stresses                                 | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 16 | 3 (Theo.) | 2,3 &4        | Stresses                                 | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 17 | 3 (Theo.) | 2,3 &4        | Stresses                                 | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 18 | 3 (Theo.) | 2,3 &4        | Strains                                  | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 19 | 3 (Theo.) | 2,3 &4        | Strains                                  | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 20 | 3 (Theo.) | 2,3 &4        | Strains                                  | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 21 | 3 (Theo.) |               | Examination                              | Electronic |                                                                    |
| 22 | 3 (Theo.) | 5             | Torsion of Circular<br>shafts            | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 23 | 3 (Theo.) | 5             | Torsion of Circular<br>shafts            | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 24 | 3 (Theo.) | 5             | Shear force & bending<br>moment Daigrams | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 25 | 3 (Theo.) | 5             | Shear force & bending<br>moment Daigrams | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 26 | 3 (Theo.) |               | Shear force & bending<br>moment Daigrams | Electronic |                                                                    |
| 27 | 3 (Theo.) |               | Flexural stresses in beams               | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 28 | 3 (Theo.) |               | Flexural stresses in beams               | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 29 | 3 (Theo.) | 1,2,3,4<br>&5 | Flexural stresses in beams               | Electronic | Questions during the lectures<br>,quiz, exam, present in the class |
| 30 | 3 (Theo.) |               | Examination                              | Electronic |                                                                    |

| 11. Infrastructure           |                                                                                                                                                            |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. Books required reading:   | <ol> <li>Engineering Mechanics Static 5-6edition by<br/>Meriam and Keaige</li> <li>Engineering Mechanics Static 10-12-13edition<br/>by Hibbeler</li> </ol> |  |  |  |  |
| 1- Main references (sources) | <ol> <li>Engineering Mechanics Static 8edition by<br/>Singer</li> <li>Strength of Material by Pytel and Singer</li> </ol>                                  |  |  |  |  |

| A- Recommended books and references (scientific journals, reports). | Elementary Mechanical Engineering                                                                                                                               |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B-Electronic references, Internet sites                             | <ol> <li>https://www.youtube</li> <li>https://www.sciencedirect.com/book/9780125<br/>551601/Static</li> <li>https://www.nature.com/articles/062292b0</li> </ol> |

12. The development of the curriculum plan Not to relay on traditional examinations but the creation of reports following the reading of textbooks. These reports are validated and transformed into academic credits for graduation purposes.
## **TEMPLATE FOR PROGRAMME SPECIFICATION**

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Dr. Mohammed B. abdul- kareem

## **PROGRAMME SPECIFICATION**

Give basic concepts for students about the details of thermodynamics application

| 1. Teaching Institution                                           | Collage of Engineering                  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------|--|--|--|
| 2. University Department/Centre                                   | Department of Environmental Engineering |  |  |  |
| 3. Course title/code                                              | Thermodynamics                          |  |  |  |
| 4. Modes of Attendance offered                                    | 2 days per week                         |  |  |  |
| 5. Semester/Year                                                  | Year                                    |  |  |  |
| 6. Number of hours tuition (total)                                | 90                                      |  |  |  |
| 7. Date of production/revision of this specification              |                                         |  |  |  |
| 8. Aims of the Course                                             |                                         |  |  |  |
| 1- The course explains the thermodynamics law and its application |                                         |  |  |  |
| 2- Explain the unit of Heat Engine cycle , Refr                   | igeration cycle                         |  |  |  |

#### 9. Learning Outcomes, Teaching, Learning and Assessment Methods

- A. Cognitive goals
- A1. Student should be able to make the application of the thermodynamics laws

A2. Used the laws of thermodynamics in the application of steam power plant unit and Heat pump.

B. The skills goals special to the Course B1.study the first, second and third law of thermodynamics B2.study these law and its application.

#### **Teaching and Learning Methods**

Classroom teaching will involve black board, power point presentations, and case study analysis.

#### **Assessment methods**

Homework related to problem solving

C. Affective and value goals C1. Understanding the application of thermodynamic science

C2. Application the laws of thermodynamic on our life

## **Teaching and Learning Methods**

Intensive studies of regulations

#### **Assessment methods**

Case study

## **D.** General and Transferable Skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4. An ability to identify, formulate, and solve engineering problems

|      |       |                                                                                 | 10. Course Struct                                                             | ure                                                                                                          |                                                                       |  |
|------|-------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| Week | Hours | ILOs                                                                            | Unit/Module or<br>Topic Title                                                 | Teaching<br>Method                                                                                           | Assessment<br>Method                                                  |  |
| 1    | 3     | Introduction                                                                    | Introduction<br>in thermodynamics                                             | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2    | 3     | Application of<br>thermodynamic<br>science                                      | Application of<br>thermodynamic science                                       | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3    | 3     | Definition of<br>thermodynamics<br>properties                                   | Intensive and extensive<br>properties                                         | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4    | 3     | Introduction of<br>system and<br>surrounding                                    | Definition of type of<br>system                                               | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 5    | 3     | Introduction in force<br>,density and specific<br>volume and specific<br>weight | Definition in force<br>,density and specific<br>volume and specific<br>weight | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 6  | 3 | Definition of pressure                    | The meaning and its<br>units                 | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|-------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 7  | 3 | Definition of<br>Temperature              | The meaning and its<br>units                 | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 8  | 3 | Heat and work                             | Definition<br>And its application            | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 9  | 3 | Introduction of laws<br>of thermodynamics | Definition laws of<br>thermodynamics         | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 10 | 3 | Zero and first law                        | Application and definition                   | Class Classroom<br>teaching will involve<br>black board, power<br>point presentations,<br>and case study              | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 11 | 3 | First law in closed<br>system             | application of First law<br>in closed system | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +        | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 3 | First law in open<br>system               | application of First law<br>in open system   | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 3 | Steady state<br>processes                 | Condition and<br>application                 | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 3 | Unsteady state<br>process                 | Meaning and example                          | Class Classroom<br>teaching will involve<br>black board, power<br>point presentations,<br>and case study<br>analysis. | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 15 | 3 | P-V diagram                                    | P-V diagram and its<br>application  | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 16 | 3 | P –T diagram                                   | P –T diagram and its<br>application | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 17 | 3 | Ideal gas and its application                  | Definition                          | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 18 | 3 | The equation of state                          | Application The equation of state   | Class Classroom<br>teaching will involve<br>black board, power<br>point presentations,<br>and case study<br>analysis. | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 19 | 3 | Real gas and its<br>application                | Definition                          | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 20 | 3 | Process of<br>thermodynamics                   | Definition                          | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +        | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 21 | 3 | Constant volume<br>process                     | Application                         | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 22 | 3 | Constant pressure<br>process                   | Application                         | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +        | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 23 | 3 | Isothermal process<br>and adiabatic<br>process | Application                         | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

|    |   |                                                                 |                                                  | Class Classroom<br>teaching will involve                                                                              |                                                                       |  |
|----|---|-----------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| 24 | 3 | Polytropic process                                              | Application                                      | black board, power<br>point presentations,<br>and case study<br>analysis.                                             | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 25 | 3 | Equation of state for<br>real gas                               | Application                                      | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 26 | 3 | Van der vales<br>equation                                       | Application                                      | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 27 | 3 | Heat effects                                                    | Application and definitions                      | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +        | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 28 | 3 | Heat of reaction ,<br>heat of formation<br>and heat of reaction | Application and definitions                      | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 29 | 3 | Sensible heat and<br>Latent heat                                | Application and definitions                      | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 30 | 3 | Second law and its<br>application                               | Application and<br>definitions of heat<br>engine | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 11. Infrastructure         |                                                       |  |  |  |
|----------------------------|-------------------------------------------------------|--|--|--|
| 1. Books Required reading: | Application of Thermodynamics in chemical engineering |  |  |  |
|                            |                                                       |  |  |  |

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department



# Academic Program and Course Description Guide

المرحلة الثالثة

**202**3

## Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

1

## **Concepts and terminology:**

**Academic Program Description:** The academic program description provides a brief summary of its vision, mission and objectives, including an accurate

description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

**Program Vision:** An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

**<u>Program Mission</u>**: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

**<u>Program Objectives</u>**: They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

**Curriculum Structure:** All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

**Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

<u>Teaching and learning strategies</u>: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

## Academic Program Description Form

University Name: University of Baghdad Faculty/Institute: College of Engineering

3

Scientific Department: Department of Environmental Engineering Academic or Professional Program Name: English Final Certificate Name: ...... Academic System: Polona program Description Preparation Date: File Completion Date: 16–2–2024

Signature: Head of Department Name: Signature: Scientific Associate Name:

Date:

Date:

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

Date:

Signature:

Approval of the Dean

#### 1. Program Vision

The strategic goal is to raise the readiness of the university formations to be distinguished now and in the future. It further aims to bring about a quantum leap in their strategic performance following international standards within the framework of true citizenship and leadership in its various cognitive, and educational research

roles. It also aims to provide community service, upgrade, and strengthen the position of the university within the framework of universities' international rankings, and within the framework of balancing between contemporaneity with modern trends in higher education and preserving originality represented by adhering to the national constants and values of the country.

#### 2. **Program Mission**

English Language Learning Program *(ELLP)* is to help students from all over the world to achieve their personal and academic goals by providing high–quality, individualized English language instruction in a small–classroom setting and warm, welcoming, inclusive, and friendly cultural environment, while also bringing valuable and diverse international student perspectives to the University.

- 3. Program Objectives
  - 1- The aim of this course is to empower students with the language and life skills
  - 2- The integrated skills approach of the course develops the student's self-confidence to
  - 3- succeed in professional and social encounters within an English-speaking global
  - 4- using language to express knowledge of Environment and health impacts hazardous

## 4. Program Accreditation

Does the program have program accreditation? And from which agency? None

## 5. Other external influences

Is there a sponsor for the program?

None

| 6. Program Structure |           |              |            |          |  |
|----------------------|-----------|--------------|------------|----------|--|
| Program Structure    | Number of | Credit hours | Percentage | Reviews* |  |
|                      |           |              |            |          |  |

|                      | Courses |   |       |
|----------------------|---------|---|-------|
| Institution          | 1       | 2 | basic |
| Requirements         |         |   |       |
| College Requirements | 4       | 2 |       |
| Department           | 4       | 2 |       |
| Requirements         |         |   |       |
| Summer Training      | 0       | 0 |       |
| Other                |         |   |       |

\* This can include notes whether the course is basic or optional.

| 7. Program Description                          |         |         |                       |  |  |  |
|-------------------------------------------------|---------|---------|-----------------------|--|--|--|
| Year/Level Course Code Course Name Credit Hours |         |         |                       |  |  |  |
| 2-2024                                          | EnE 108 | English | theoretical practical |  |  |  |
| yes 0                                           |         |         |                       |  |  |  |

| 8. Expected learning outcomes of the program                                                                                                                                   |                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Knowledge                                                                                                                                                                      |                                                                                              |  |  |
| Find and understand<br>information about<br>vocabulary, pronunciation,<br>usage, and grammar in<br>reference texts, online<br>resources, and English<br>language dictionaries, | Become more effective, independent and confident self-directed learners                      |  |  |
| Skills                                                                                                                                                                         |                                                                                              |  |  |
| The integrated skills<br>approach of the course<br>develops the student's self-<br>understanding                                                                               | Understand texts using effective learning strategies for reading<br>and vocabulary building, |  |  |
| using language to express<br>knowledge of Environment<br>and health impacts                                                                                                    | Improve their general skills for study and career management                                 |  |  |
| Ethics                                                                                                                                                                         |                                                                                              |  |  |

| Develop conversational<br>English skills necessary for<br>becoming a contributing<br>participant in small group<br>activities, large group<br>discussions, and oral<br>presentations, | Articulate personal goals and evaluate progress towards their achievement |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Understand texts using<br>effective learning strategies<br>for reading and vocabulary<br>building,                                                                                    | An ability to identify, formulate, and solve engineering problems         |

## 9. Teaching and Learning Strategies

Lecture and classroom discussion

## 10. Evaluation methods

Assignments and exams

## 11. Faculty

## Faculty Members

| Academic Rank | Specialization |                                       | Special<br>Requirements/Skills<br>(if applicable) |  | Number of the teaching staff |          |
|---------------|----------------|---------------------------------------|---------------------------------------------------|--|------------------------------|----------|
|               | General        | Special                               |                                                   |  | Staff                        | Lecturer |
| Asst. Prof.   | English        | Linguistics/<br>Discourse<br>Analysis |                                                   |  | Current faculty<br>mumber    |          |

## **Professional Development**

#### Mentoring new faculty members

The orientation for new faculty members is arranged by the department chair and may consist of a few informal meetings and the distribution of a handbook and other supplementary material. In contrast, approximately one in four colleges have formalized and uniform faculty mentorship programs across all departments.

**Professional development of faculty members** 

In-depth programs included both intensive, multi-day offerings in a short course or retreat format, and extended offerings with multiple sessions spaced over a term, a year, or even longer. These formats typically enrolled a cohort of participants who continued for the entire program.

#### 12. Acceptance Criterion

central admission

### 13. The most important sources of information about the program

-New Headway Plus [Beginner] by John and Liz Soars, Oxford: Oxford University Press (2006),

-Morphy, A.J (1983) English Grammar in use. Cambridge: CUP

https://www.englishclub.com/grammar/verb-tenses.htm

https://www.ego4u.com/en/cram-

www.perfect-english-grammar.com/verb-tenses.htm

https://en.wikipedia.org/wiki/Grammatical\_tense

14. Program Development Plan

The development could be done by consulting more resources and increase lecture length to 3 hours weekly

| Program Skills Outline    |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |
|---------------------------|----------------|---------|----------|------|--------|----|-----|--------|-------|-----------|-----------|----------|-----|----|----|
|                           |                |         |          |      |        |    | Req | uired  | progr | am Lo     | earnin    | g outcon | nes |    |    |
| Year/Level Course<br>Code | Course<br>Code | Name    | Basic or | Knov | vledge |    |     | Skills | 5     |           |           | Ethics   |     |    |    |
|                           |                |         | optional | A1   | A2     | A3 | A4  | B1     | B2    | <b>B3</b> | <b>B4</b> | C1       | C2  | С3 | C4 |
| 2024/level 2              | EnE 108        | English | Basic    |      |        | •  |     |        | •     |           |           | •        |     |    |    |
|                           |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |
|                           |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |
|                           |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |
|                           |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |
|                           |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |
|                           |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |
|                           |                |         |          |      |        |    |     |        |       |           |           |          |     |    |    |

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

## **Course Description Form**

| 10. Course<br>Week | Structure Hours                        | Required                      | Unit or subject name                                                                                                                                  | Learning                                                                                                                                                            | Evaluation                                                                                                |
|--------------------|----------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                    |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
| Strategy           |                                        | Lecture an                    | d classroom discussion                                                                                                                                |                                                                                                                                                                     |                                                                                                           |
|                    | ing and L                              | earning Strate                | •                                                                                                                                                     |                                                                                                                                                                     |                                                                                                           |
| Name<br>Email      | e: Asst. Pro<br>: nagham<br>e Objectiv | of. Nagham A<br>.ali@coeg.uol | A1) Find and<br>vocabulary, p<br>in reference to<br>language dict<br>(A2) Develop<br>necessary for<br>participant in<br>discussions, a<br>(A3) Unders | understand informor<br>ronunciation, usa<br>exts, online resou<br>ionaries,<br>o conversational E<br>becoming a contra-<br>small group active<br>and oral presentat | mation about<br>ge, and grammar<br>rces, and English<br>English skills<br>ributing<br>vities, large group |
| 6. Numb<br>2       | oer of Crea                            | lit Hours (Tota               | al) / Number of Units (                                                                                                                               | Total)                                                                                                                                                              |                                                                                                           |
| 5. Availa          | able Atten                             | dance Forms:                  | attendance and Google                                                                                                                                 | e classroom                                                                                                                                                         |                                                                                                           |
| 4. Descr           | iption Pro                             | eparation Dat                 | te:16/2/2024                                                                                                                                          |                                                                                                                                                                     |                                                                                                           |
| 3. Seme            | ster / Yea                             | r: Semester                   |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
| 2. Cours           | se Code:                               | EnE 108                       |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
|                    |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |
|                    |                                        |                               |                                                                                                                                                       |                                                                                                                                                                     |                                                                                                           |

|                                                                                                                                                    |                                                                                             | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                      |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|
| Veek 1<br>Veek 2<br>Veek 3<br>Veek 4<br>Veek 5<br>Veek 6<br>Veek 7<br>Veek 8<br>Veek 9<br>eek 10<br>eek 11<br>eek 12<br>eek 13<br>eek 14<br>eek 15 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <ul> <li>(A) Finding and<br/>understanding<br/>information abo<br/>vocabulary,<br/>pronunciation,<br/>usage, and<br/>grammar in<br/>reference texts,<br/>online resources<br/>and English<br/>language<br/>dictionaries,</li> <li>(B) Developing<br/>conversational<br/>English skills<br/>necessary for<br/>becoming a<br/>contributing<br/>participant in sn<br/>group activities,<br/>large group<br/>discussions, and<br/>oral presentatio</li> <li>(C) Understandi<br/>texts using effec<br/>learning structu</li> </ul> | Introduction to the materi<br>Unit 1<br>Unit2,3<br>Unit 4,5<br>Quiz<br>Unit6,7<br>Midterm exam<br>Unit 8,9<br>Quiz<br>General discussion<br>Unit 10,&assignment<br>Unit 11,12<br>Composition Writ<br>discussion<br>Unit13,14<br>English for Spec<br>Purposes | Lecture and classred | Questions<br>during<br>lectures , c<br>exam, preser<br>the class |

## 11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, essays .... etc

|                 |                 | Time/Num<br>ber  | Weight (Marks) |
|-----------------|-----------------|------------------|----------------|
|                 | Quizzes         | 2                | 20% (20)       |
| Formative       | Assignments     | 1                | 10% (10)       |
| assessment      | Projects / Lab. | 0                | 0              |
|                 | composition     | 1                | 10% (10)       |
| Summative       | Midterm Exam    | 2 hr             | 10% (10)       |
| assessment      | Final Exam      | 2hr              | 50% (50)       |
| Total assessmen | nt              | 100% (100 Marks) |                |

## 12. Learning and Teaching Resources

| (1) New Headway Plus [Beginner] by<br>John and Liz Soars, Oxford: Oxford<br>University Press (2006),                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>New Headway Plus [Beginner] by Jo and Liz Soars, Oxford: Oxford University Pre (2006),</li> </ul>                                                                                                                                         |
| <ul> <li>(2) Modern scientific articles from the<br/>news related to the students' specialty, and</li> <li>(3) Internet links and videos related to<br/>topics discussed in General English and Engl<br/>for Specific Purposes lectures</li> </ul> |
| Dictionaries and supplies supplementary                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                    |
| https://www.englishclub.com/grammar/verb-<br>tenses.htm         https://www.ego4u.com/en/cram-<br>www.perfect-english-grammar.com/verb-<br>tenses.htm         https://en.wikipedia.org/wiki/Grammatical_t<br>se                                    |
|                                                                                                                                                                                                                                                    |

## **TEMPLATE FOR COURSE SPECIFICATION**

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## Course Instructor: Dr. Ziad Tark Abd Ali

## **COURSE SPECIFICATION**

# Full knowledge of differential equations: classification, solution methods, and modeling

| University of Baghdad/ College of Engineering                                                                            |
|--------------------------------------------------------------------------------------------------------------------------|
| Environmental Engineering Department                                                                                     |
| Hazardous Waste                                                                                                          |
| 2 days per week electronic                                                                                               |
| Year                                                                                                                     |
| 90 h                                                                                                                     |
| 2019                                                                                                                     |
|                                                                                                                          |
| ing to type, order, degree, and linearity                                                                                |
| y differential equations according to methods of ations.                                                                 |
| d learn methods of solution.                                                                                             |
| and/or 2nd order ordinary differential equations<br>examples from fluid mechanics, heat and/or mass<br>hemical kinetics. |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |
|                                                                                                                          |

9. Learning Outcomes, Teaching, Learning and Assessment Method

A-Cognitive goals.

A1. Training students to be able to classify differential equations and solve them in correct ways A2. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for

#### B. The skills goals special to the course.

B1. Employing methods of solving differential equations to convert some environmental phenomena into mathematical relationships through which we can predict what will happen in the future, and this is called "Modeling"

B2. Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Development of students' mental skills

C2. Training students to link mathematics with environmental concepts C3.Prepare students for successful careers in environmental engineering

Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

Case studies

- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
- D1. Become more effective, independent and confident self-directed learners
- D2. Improve their general skills for study and career management
- D3. Articulate personal goals and evaluate progress towards their achievement
- D4.An ability to identify, formulate, and solve engineering problems

| 10. Cou | rse Structu | ire  |                                                             |                    |                                                                       |
|---------|-------------|------|-------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| Week    | Hours       | ILOs | Unit/Module or<br>Topic Title                               | Teaching<br>Method | Assessment<br>Method                                                  |
| 1       | 3           |      | Introduction to<br>differential equations                   | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2       | 3           |      | Classification of differential equations.                   | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3       | 3           |      | Solution approach to<br>ordinary differential<br>equations. | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4       | 3           |      | Categorization of first<br>order differential<br>equations. | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5       | 3           |      | Solution methods of a first order differential equations.   | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 6       | 3           |      | =                                                           | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7       | 3           |      | =                                                           | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 0   |   |                         | _          |                       |
|-----|---|-------------------------|------------|-----------------------|
| 8   | 3 | Categorization of       | Electronic | Questions during the  |
|     |   | second order            |            | lectures ,quiz, exam, |
|     |   | differential equations. |            | present in the class  |
|     |   |                         |            |                       |
| 9   | 3 | =                       | Electronic | Questions during the  |
|     |   |                         |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | present in the class  |
|     |   |                         |            |                       |
|     |   |                         |            |                       |
| 10  | 3 | =                       | Electronic | Questions during the  |
| 10  | 5 |                         |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | present in the class  |
|     |   |                         |            |                       |
| 11  | 3 | Simultaneous            | Electronic | Questions during the  |
|     |   | differential equations  |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | present in the class  |
|     |   |                         |            |                       |
| 12  | 3 | =                       | Electronic | Questions during the  |
|     |   |                         |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | 1                     |
|     |   |                         |            |                       |
| 13  | 3 | - C                     | Electronic | Questions during the  |
|     |   | equations               |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            |                       |
| 14  | 3 | Inverse D-operator      | Electronic | Questions during the  |
|     |   | method                  |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | 1                     |
| 15  | 3 | =                       | Electronic | Questions during the  |
| 1.5 | 5 | _                       | Licetionie | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | present in the class  |
| 16  |   | =                       | Electronic | Questions during the  |
|     |   |                         |            | lectures, quiz, exam, |
|     |   |                         |            | present in the class  |
| 17  |   | Laplace transformations | Electronic | Questions during the  |
|     |   |                         |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
| 18  |   |                         | Electronic | Questions during the  |
| 10  |   |                         | Licetonie  | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | present in the class  |
| 19  |   | =                       | Electronic | Questions during the  |
|     |   |                         |            | lectures ,quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            |                       |
| 20  |   | =                       | Electronic | Questions during the  |
|     |   |                         |            | lectures, quiz, exam, |
|     |   |                         |            | present in the class  |
|     |   |                         |            | F                     |

| 21 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|-----------------------------------------------------|------------|-----------------------------------------------------------------------|
| 22 | partial differer<br>equations and<br>methods of sol | learn      | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 23 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 24 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 25 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 26 | Formulation and<br>engineering<br>applications of   |            | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 27 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 28 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 29 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 30 | =                                                   | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure           |                                                                                                                                                                                              |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:   | <ol> <li>Differential Equations; 3rd. Ed.; Goode &amp; Annan;<br/>Pearson, 2007.</li> <li>Advanced Engineering Mathematics; 5th Ed.; Wylie<br/>&amp; Barrett ; McGraw-Hill , 1982</li> </ol> |
| 2. Main references (sources) | Elementary Differential equations ; 6th edition ; by<br>C.Henry Edwards & David E.Perrey ; Pearson-Prentice<br>Hall, 2008                                                                    |

| A- Recommended books and references (scientific journals, reports). |  |
|---------------------------------------------------------------------|--|
| B-Electronic references, Internet sites                             |  |

12. The development of the curriculum plan

The development could concentrate on more applications and mathematical modeling.



## **TEMPLATE FOR COURSE SPECIFICATION**

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Prof. Dr. Shahlaa Esmil Ebrahim

## **COURSE SPECIFICATION**

Full knowledge of hazardous wastes, regulations, properties of hazardous wastes, and some remediation methods.

| sity of Baghdad/ College of Engineering |
|-----------------------------------------|
| nmental Engineering Department          |
| lous Waste                              |
| per week electronic                     |
| ter                                     |
|                                         |
| 021                                     |
|                                         |
| tc.                                     |
|                                         |
| bects of management of hazardous wastes |
| s hazardous waste mismanagement         |
|                                         |
|                                         |
|                                         |
|                                         |
|                                         |

9. Learning Outcomes, Teaching ,Learning and Assessment Method

#### A-Cognitive goals.

A1. After completion of the course students should be able to characterization of hazardous waste A2. analysis of hazardous waste constituents including QA/QC issues.

A3. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

#### B. The skills goals special to the course.

B1.Understand health and environmental issues related to hazardous waste management

B2. apply steps in hazardous waste management-waste reduction at source, collection techniques, materials

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

#### Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Optimization of solid waste transport, treatment and disposal techniques

C2. Economics of the onsite vs. offsite waste management options

C3. Prepare students for successful careers in environmental engineering

## Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

#### Case studies

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4.An ability to identify, formulate, and solve engineering problems

#### 10. Course Structure

| Week | Hours | ILOs                                        | Unit/Module or<br>Topic Title                                                                 | Teaching<br>Method | Assessment<br>Method                                                  |
|------|-------|---------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| 1    | 3     | Definition of<br>hazardous<br>waste         | General definition of hazardous waste, sources                                                | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2    | 3     | hazardous                                   | Past disposal of HW, Pre<br>regulatory disposal of<br>hazardous waste,                        | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3    | 3     | ntal                                        | hazardous waste<br>environmental legislation<br>and disposal regulations,<br>RCRA, HSWA, SARA | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4    | 3     | manageme                                    | Hazardous management,<br>assessment and control,<br>NCP, Risk                                 | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5    | 3     | Cradle to<br>grave of<br>hazardous<br>waste | Source – pathway-<br>receptor analysis                                                        | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 6    | 3     | ure                                         | Hazardous waste<br>nomenclature, organic,<br>inorganic                                        | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7    | 3     | Hazardous                                   | Organic , Inorganic, and<br>radioactive hazardous<br>waste                                    | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 8    | 3     | of HW                                       | Concentration of HW in water, air, soil , specific activity                                   | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 9  | 3 | -                          | Water solubility of weak<br>acids and bases                                 | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|----------------------------|-----------------------------------------------------------------------------|------------|-----------------------------------------------------------------------|
| 10 | 3 | of HW                      | Density and specific<br>gravity, Light and dense<br>nonaqueous phase liquid | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 11 | 3 | Properties<br>of HW        | Flammability limits                                                         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 3 | -                          | Flash point and ignition<br>temperature                                     | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 3 | Methods<br>of<br>treatment | Adsorption, ion exchange                                                    | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 3 | Methods<br>of<br>treatment | Equilibrium isotherm<br>models                                              | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 3 | Transporta<br>ion of HW    | Labels and placards                                                         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:   | <ul> <li>1-Hazardous materials spills handbook, Gary F. Bennett,<br/>McGraw Hills Book Comp. (1982).</li> <li>2-Environmental treatment technology for hazardous and<br/>medical wastes-remedial scope and efficacy by Dutta</li> <li>3-2014 HAZARDOUS WASTE REPORT INSTRUCTIONS<br/>AND FORMS, Louisiana Department of Environmental<br/>Quality, 2014.</li> <li>4- 2016 HAZARDOUS WASTE REPORT, Louisiana<br/>Department of Environmental Quality, 2016.</li> </ul> |
| 2. Main references (sources) | Hazardous wastes, sources, pathways, receptors, by<br>Richard J. Watts (1997)                                                                                                                                                                                                                                                                                                                                                                                         |

| A- Recommended books and references (scientific journals, reports). | Journals<br>1. International Journal of Environment and Waste<br>Management<br>2. Waste Management                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B-Electronic references, Internet sites                             | https://www.epa.gov/hw/household-hazardous-waste-hhw<br>https://nepis.epa.gov/Exe/ZyNET.exe/10001XBX.TXT?ZyAction<br>D=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=<br>&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n<br>&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&Q<br>FieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File |

12. The development of the curriculum plan

The development could concentrate on more applications and mathematical modeling through taking 2 courses instead of one.



## **TEMPLATE FOR COURSE SPECIFICATION**

## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Prof. Dr. Shahlaa Esmil Ebrahim

## **COURSE SPECIFICATION**

Full knowledge of hazardous wastes, regulations, properties of hazardous wastes, and some remediation methods.

| sity of Baghdad/ College of Engineering                                                      |  |  |  |  |
|----------------------------------------------------------------------------------------------|--|--|--|--|
| nmental Engineering Department                                                               |  |  |  |  |
| lous Waste                                                                                   |  |  |  |  |
| per week electronic                                                                          |  |  |  |  |
| ter                                                                                          |  |  |  |  |
|                                                                                              |  |  |  |  |
| 021                                                                                          |  |  |  |  |
|                                                                                              |  |  |  |  |
| 1- Understanding hazardous waste, industrial waste, etc.                                     |  |  |  |  |
| 2- Understanding the hazardous waste accidents.                                              |  |  |  |  |
| 3- Knowledge of legal, institutional and financial aspects of management of hazardous wastes |  |  |  |  |
| 4- Become aware of Environment and health impacts hazardous waste mismanagement              |  |  |  |  |
|                                                                                              |  |  |  |  |
|                                                                                              |  |  |  |  |
|                                                                                              |  |  |  |  |
|                                                                                              |  |  |  |  |
|                                                                                              |  |  |  |  |

9. Learning Outcomes, Teaching ,Learning and Assessment Method

#### A-Cognitive goals.

A1. After completion of the course students should be able to characterization of hazardous waste A2. analysis of hazardous waste constituents including QA/QC issues.

A3. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

#### B. The skills goals special to the course.

B1.Understand health and environmental issues related to hazardous waste management

B2. apply steps in hazardous waste management-waste reduction at source, collection techniques, materials

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

#### Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Optimization of solid waste transport, treatment and disposal techniques

C2. Economics of the onsite vs. offsite waste management options

C3.Prepare students for successful careers in environmental engineering

## Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

#### Case studies

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4.An ability to identify, formulate, and solve engineering problems

#### 10. Course Structure

| Week | Hours | ILOs                                        | Unit/Module or<br>Topic Title                                                                 | Teaching<br>Method  | Assessment<br>Method                                                  |
|------|-------|---------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------|
| 1    | 3     | Definition of<br>hazardous<br>waste         | General definition of hazardous waste, sources                                                | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2    | 3     | hazardous                                   | Past disposal of HW, Pre<br>regulatory disposal of<br>hazardous waste,                        | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3    | 3     | ntal                                        | hazardous waste<br>environmental legislation<br>and disposal regulations,<br>RCRA, HSWA, SARA | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4    | 3     | manageme                                    | Hazardous management,<br>assessment and control,<br>NCP, Risk                                 | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5    | 3     | Cradle to<br>grave of<br>hazardous<br>waste | Source – pathway-<br>receptor analysis                                                        | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 6    | 3     | ure                                         | Hazardous waste<br>nomenclature, organic,<br>inorganic                                        | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7    | 3     | Hazardous                                   | Organic , Inorganic, and<br>radioactive hazardous<br>waste                                    | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 8    | 3     | of HW                                       | Concentration of HW in water, air, soil , specific activity                                   | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 9  | 3 | Properties<br>of HW        | Water solubility of weak<br>acids and bases                                 | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|----------------------------|-----------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------|
| 10 | 3 | Properties<br>of HW        | Density and specific<br>gravity, Light and dense<br>nonaqueous phase liquid | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 11 | 3 | Properties<br>of HW        | Flammability limits                                                         | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 3 | Properties<br>of HW        | Flash point and ignition temperature                                        | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 3 | Methods<br>of<br>treatment | Adsorption, ion exchange                                                    | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 3 | Methods<br>of<br>treatment | Equilibrium isotherm<br>models                                              | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 3 | Transporta<br>ion of HW    | Labels and placards                                                         | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:   | <ul> <li>1-Hazardous materials spills handbook, Gary F. Bennett,<br/>McGraw Hills Book Comp. (1982).</li> <li>2-Environmental treatment technology for hazardous and<br/>medical wastes-remedial scope and efficacy by Dutta</li> <li>3-2014 HAZARDOUS WASTE REPORT INSTRUCTIONS<br/>AND FORMS, Louisiana Department of Environmental<br/>Quality, 2014.</li> <li>4- 2016 HAZARDOUS WASTE REPORT, Louisiana<br/>Department of Environmental Quality, 2016.</li> </ul> |
| 2. Main references (sources) | Hazardous wastes, sources, pathways, receptors, by<br>Richard J. Watts (1997)                                                                                                                                                                                                                                                                                                                                                                                         |

| A- Recommended books and references (scientific journals, reports). | Journals<br>1. International Journal of Environment and Waste<br>Management<br>2. Waste Management                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B-Electronic references, Internet sites                             | https://www.epa.gov/hw/household-hazardous-waste-hhw<br>https://nepis.epa.gov/Exe/ZyNET.exe/10001XBX.TXT?ZyAction<br>D=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=<br>&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n<br>&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&Q<br>FieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File |

12. The development of the curriculum plan

The development could concentrate on more applications and mathematical modeling through taking 2 courses instead of one.



#### **TEMPLATE FOR PROGRAMME SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

#### Course Instructor : Prof. Dr. Ahmed Abed Mohammed

#### **PROGRAMME SPECIFICATION**

Give basic concepts for students about the details of mass transfer

| 1. Teaching Institution                                                                                                                              | Collage of Engineering                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--|--|--|
| 2. University Department/Centre                                                                                                                      | Department of Environmental Engineering             |  |  |  |
| 3. Course title/code                                                                                                                                 | Mass transfer                                       |  |  |  |
| 4. Modes of Attendance offered                                                                                                                       | 2 days per week electronic                          |  |  |  |
| 5. Semester/Year                                                                                                                                     | Year                                                |  |  |  |
| 6. Number of hours tuition (total)                                                                                                                   | 90                                                  |  |  |  |
| 7. Date of production/revision of this specification                                                                                                 | 2019                                                |  |  |  |
| 8. Aims of the Course                                                                                                                                |                                                     |  |  |  |
| <ol> <li>Understanding the fundamental concepts of mass transfer principles and to apply those<br/>concepts to real engineering problems.</li> </ol> |                                                     |  |  |  |
| 2. This source will provide on everyious of                                                                                                          | mana transfer energiane at basis to an intermediate |  |  |  |

2- This course will provide an overview of mass transfer operations at basic to an intermediate level. Coverage will be relatively broad

# 9. Learning Outcomes, Teaching, Learning and Assessment Methods A. Cognitive goals A1. The goal is to provide students with the theoretical/analytical background to understand mass transfer operations and to tackle the sort of complex problems. B. The skills goals special to the Course B1. Students will learn about the diffusional mass transfer B2. Operation of cooling tower will be clearly understood B3. Operation of Dryer will be understood B4.Student will understand the mechanism of crystallization and absorption **Teaching and Learning Methods** Classroom teaching will involve black board, power point presentations, and case study analysis. **Assessment methods** Homework related to problem solving C. Affective and value goals C1. Optimization of solid waste transport, treatment and disposal techniques C2. Economics of the onsite vs. offsite waste management options C3. Prepare students for successful careers in environmental engineering **Teaching and Learning Methods** Intensive studies of regulations **Assessment methods** Case study

# **D.** General and Transferable Skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

- D2. Improve their general skills for study and career management
- D3. Articulate personal goals and evaluate progress towards their achievement

D4. An ability to identify, formulate, and solve engineering problems

| 10. Course Structure |       |                                             |                                             |                    |                                                                       |  |
|----------------------|-------|---------------------------------------------|---------------------------------------------|--------------------|-----------------------------------------------------------------------|--|
| Week                 | Hours | ILOs                                        | Unit/Module or<br>Topic Title               | Teaching<br>Method | Assessment<br>Method                                                  |  |
| 1                    | 3     | General<br>introduction                     | General introduction                        | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2                    | 3     | Diffusional mass<br>transfer                | Diffusional mass<br>transfer                | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3                    | 3     | Diffusional mass<br>transfer                | Diffusional mass<br>transfer                | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4                    | 3     | Ficks law of<br>diffusion                   | Ficks law of diffusion                      | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 5                    | 3     | Ficks law of<br>diffusion                   | Ficks law of diffusion                      | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 6                    | 3     | Application to<br>environmental<br>problems | Application to<br>environmental<br>problems | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 7  | 3 | Application to<br>environmental<br>problems    | Application to<br>environmental<br>problems    | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|------------------------------------------------|------------------------------------------------|------------|-----------------------------------------------------------------------|
| 8  | 3 | Diffusion in<br>concentrated<br>solutions      | Diffusion in<br>concentrated<br>solutions      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 9  | 3 | Diffusion in<br>concentrated<br>solutions      | Diffusion in<br>concentrated<br>solutions      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 10 | 3 | Diffusion through<br>semi-infinte<br>mediums   | Diffusion through<br>semi-infinte mediums      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 11 | 3 | Diffusion through<br>semi-infinte<br>mediums   | Diffusion through<br>semi-infinte mediums      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 3 | Diffusion coupled<br>with chemical<br>reaction | Diffusion coupled<br>with chemical<br>reaction | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 3 | Diffusion coupled<br>with chemical<br>reaction | Diffusion coupled<br>with chemical<br>reaction | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 3 | Concept of mass<br>transfer<br>coefficients    | Concept of mass<br>transfer coefficients       | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 3 | Concept of mass<br>transfer<br>coefficients    | Concept of mass transfer coefficients          | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 16 | 3 | Mass transfer<br>correlations                  | Mass transfer<br>correlations                  | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 17 | 3 | Mass transfer<br>correlations                  | Mass transfer<br>correlations                  | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 18 | 3 | Application to<br>engineering<br>problems      | Application to<br>engineering problems         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 19 | 3 | Application to<br>engineering<br>problems      | Application to<br>engineering problems         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 20 | 3 | Mass transfer<br>across interface    | Mass transfer across<br>interface    | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|--------------------------------------|--------------------------------------|------------|-----------------------------------------------------------------------|
| 21 | 3 | Mass transfer<br>across interface    | Mass transfer across<br>interface    | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 22 | 3 | Overall mass<br>transfer coefficient | Overall mass transfer<br>coefficient | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 23 | 3 | Overall mass<br>transfer coefficient | Overall mass transfer<br>coefficient | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 24 | 3 | Absorption and<br>Stripping          | Absorption and<br>Stripping          |            | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 25 | 3 | Absorption and<br>Stripping          | Absorption and<br>Stripping          | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 26 | 3 | Design of absorption tower           | Design of absorption<br>tower        | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 27 | 3 | Design of absorption tower           | Design of absorption<br>tower        | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 28 | 3 | Adsorption                           | Adsorption                           | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 29 | 3 | adsorption                           | adsorption                           | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 30 | 3 | Leaching                             | Leaching                             | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure                                                        |                                                                                                                                                                                                    |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:                                                | <ol> <li>Transport process and separation process principles<br/>by geankoplis.</li> <li>Mass transfer operation by treybal.</li> <li>Chemical engineering volume 1&amp;2 coulson &amp;</li> </ol> |
| 2. Main references (sources)                                              | <ul> <li>Principles of unit operation by foust.</li> <li>Separation process principles by seader.</li> </ul>                                                                                       |
| A- Recommended books and<br>references (scientific journals,<br>reports). | Heat and mass transfer journal                                                                                                                                                                     |
| <b>B-Electronic references, Internet</b> sites                            | https://www.routledge.com/Diffusion-and-Mass-Transfer/Vrentas-<br>Vrentas/p/book/9781466515680                                                                                                     |

#### **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Prof. Dr. Shahlaa Esmil Ebrahim

#### **COURSE SPECIFICATION**

This course presents numerical methods for solving mathematical problems. It deals with the theory and application of numerical approximation techniques as well as their computer implementation. It covers computer arithmetic, solution of nonlinear equations, interpolation and approximation, numerical integration and differentiation, solution of differential equations, and matrix computation.

| 1. Teaching Institution                                                                                                    | University of Baghdad/ College of Engineering |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|
| 2. University Department/Centre                                                                                            | Environmental Engineering Department          |  |  |  |  |
| 3. Course title/code                                                                                                       | Numerical Analysis                            |  |  |  |  |
| 4. Modes of Attendance offered                                                                                             | 2 days per week electronic                    |  |  |  |  |
| 5. Semester/Year                                                                                                           | Year ( Annual)                                |  |  |  |  |
| 6. Number of hours tuition (total)                                                                                         | 90 h                                          |  |  |  |  |
| 7. Date of production/revision of this specification                                                                       | 2020-2021                                     |  |  |  |  |
| 8. Aims of the Course                                                                                                      |                                               |  |  |  |  |
| The student will be capable of solving the mathematical models                                                             |                                               |  |  |  |  |
| that represent different physical and engineering models<br>numerically and find the best fit to the experimental data and |                                               |  |  |  |  |
| numericany and ind the best in to h                                                                                        | ne experimental uata allu                     |  |  |  |  |

widened the engineering image of the student.

9. Learning Outcomes, Teaching ,Learning and Assessment Methode

#### A- Cognitive goals

A1. Develop an understanding of the core ideas and concepts of Numerical Methods.

A2. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

B. The skills goals special to the course.

B1. Be able to recognize the power of abstraction and generalization, and to carry out investigative B2. Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Be able to apply rigorous, analytic, highly numerate approach to analyze and solve problems using C2 Prepare students for successful careers in environmental engineering

Teaching and Learning Methods

Intensive homework and applications

Assessment methods

Team work and problem solving

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Be able to communicate problem solutions using correct mathematical terminology and good D4.An ability to identify, formulate, and solve engineering problems

| 10. Cou | 10. Course Structure |                              |                                                                                |                     |                                                                       |  |
|---------|----------------------|------------------------------|--------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------|--|
| Week    | Hours                | ILOs                         | Unit/Modul<br>e or<br>Topic<br>Title                                           | Teaching<br>Methods | Assessment<br>Method                                                  |  |
| 1       | 3                    | and round of                 | Studying types of<br>error, Exact and<br>approximate<br>solutions              | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2       | 3                    | and round of errors          | truncation, round<br>of error, relative<br>error,<br>absolute,<br>applications | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3       | 3                    | Roots of equations           | Open and closed<br>methods<br>Bisection method                                 | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4       | 3                    | Roots of equations           | Newton Method                                                                  | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 5       | 3                    | 1                            | Linear and quadratic                                                           | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 6       | 3                    | -                            | Jacobi , Gauss<br>Siedal, Gauss<br>Elimination,                                | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 7       | 3                    | Linear algebraic equations   | Cramer's rule,<br>matric inversion                                             | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 8       | 3                    | Curve fitting                | First and second order                                                         | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 9       | 3                    | Curve fitting                | Applications                                                                   | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 10      | 3                    | Numerical<br>differentiation | Forward,<br>backward, central                                                  | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 11 | 3 | Numerical                                                        | Divided difference                      | Direct in the class | Questions during the                                                  |
|----|---|------------------------------------------------------------------|-----------------------------------------|---------------------|-----------------------------------------------------------------------|
|    |   | differentiation                                                  | errors                                  |                     | lectures ,quiz, exam,<br>present in the class                         |
| 12 | 3 | Numerical<br>differentiation<br>problems                         | Field applications                      | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 3 | Numerical<br>Integration                                         | Elements of<br>numerical<br>integration | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 3 | Numerical<br>Integration                                         | Composite rule                          | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 3 | Ordinary<br>differential<br>equations                            | Euler method                            | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 16 | 3 | Ordinary<br>differential<br>equations                            | Modified Euler<br>method                | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 17 | 3 | Advanced<br>numerical<br>differentiation                         | Two dimensional                         | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 18 | 3 | Advanced<br>numerical<br>differentiation                         | Applications                            | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 19 | 3 | Advance<br>numerical<br>integration                              | Two dimensional applications            | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 20 | 3 | Partial<br>differential<br>equations                             | Two dimensional problems                | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 21 | 3 | Partial<br>differential<br>equations                             | Two dimensional problems                | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 22 | 3 | Solution of set<br>of partial<br>differential<br>equations       | Using different<br>techniques           | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 23 | 3 | Numerical<br>solution of<br>partial<br>differential<br>equations | Introduction to<br>problem solver       | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 24 | 3 | Numerical<br>solution of<br>partial<br>differential<br>equations | Elliptic                                            | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|---|------------------------------------------------------------------|-----------------------------------------------------|---------------------|-----------------------------------------------------------------------|
| 25 | 3 | Numerical<br>solution of<br>partial<br>differential<br>equations | Parabolic                                           | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 26 | 3 | Numerical<br>solution of<br>partial<br>differential<br>equations | Hhyper bolic                                        | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 27 | 3 | Numerical<br>solution of<br>partial<br>differential<br>equations | Parabolic<br>equations in two<br>spatial dimensions | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 28 | 3 | Numerical<br>solution of<br>nonlinear<br>equations               | Application of<br>nonlinear equation<br>solving     | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 29 | 3 | Applications                                                     | Field applications                                  | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 30 | 3 | Applications                                                     | Field applications                                  | Direct in the class | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

11. Infrastructure

|                                         | <ul> <li>1-Steven C. Chapra, and Raymond P.</li> <li>Canale, 2006, Numerical Methods for</li> <li>Engineers, Fifth Edition, McGraw Hill.</li> <li>2- N. S. Asaithambi , Numerical</li> <li>analysis theory and practice</li> <li>3- James L. Bauchanan and Turner</li> <li>,Numerical methods and analysis</li> </ul> |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | George W. and Collins, II, 2003,<br>Fundamental Numerical Methods and Data<br>Analysis                                                                                                                                                                                                                                |
| A- Recommended books and                | J.B.Dixtt, Numerical Methods<br>Acta Numerica Journal<br>Siam Journal on Numerical Analysis                                                                                                                                                                                                                           |
| B-Electronic references, Internet sites | https://www.coursera.org/learn/intro-to-numerical-analysis                                                                                                                                                                                                                                                            |

12. The development of the curriculum plan

The development includes more computer applications using Matlab program and other software

#### **TEMPLATE FOR COURSE SPECIFICATION**

#### HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

#### Course Instructor: Prof. Dr. Ayad A.H. Faisal

#### **COURSE SPECIFICATION**

Full knowledge of Soil science, origin, classification, pollution, and remediation methods.

| 1. Teaching Institution                                                     | University of Baghdad/ College of Engineering                                             |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 2. University Department/Centre                                             | Environmental Engineering Department                                                      |
| 3. Course title/code                                                        | Soil Science and Pollution                                                                |
| 4. Modes of Attendance offered                                              | 2 days per week electronic+ 1 day per week lab<br>(lab for 1 <sup>st</sup> semester only) |
| 5. Semester/Year                                                            | Year                                                                                      |
| 6. Number of hours tuition (total)                                          | 90 h for theoretical + 30 h for lab                                                       |
| 7. Date of production/revision of this specification                        | 2019                                                                                      |
| 8. Aims of the Course                                                       |                                                                                           |
| 1- Understanding origin, composition, classifica                            |                                                                                           |
| 2- Understanding the flow of water in subsu<br>3- Sources of soil pollution | urface medium.                                                                            |
| 4- Theoretical modeling of contaminant transpo                              | rt                                                                                        |
|                                                                             |                                                                                           |
|                                                                             |                                                                                           |
|                                                                             |                                                                                           |
|                                                                             |                                                                                           |

9. Learning Outcomes, Teaching ,Learning and Assessment Method

#### A-Cognitive goals.

A1. After completion of the course students should be able to characterization of soil and modeling of contaminant transport mathematically to find the required time to reach the water resources

A2. Identification and measurement the main properties of the soil like porosity, void ratio....etc.

A3. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

B. The skills goals special to the course.

B1.Understand health and environmental issues related to soil and groundwater pollution

B2. apply steps in reclamation of soil and contaminated groundwater

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

#### Teaching and Learning Methods

1- Lectures.

- 2- Tutorials.
- 3- Homework and Assignments.
- 4- Lab. Applications.
- 5- Tests and Exams.
- 6- In-Class Questions and Discussions.
- 7- Connection between Theory and Application.
- 9- Extracurricular Activities.
- 11- In- and Out-Class oral conservations.

#### Assessment methods

- 1. Examinations, Tests, and Quizzes.
- 2. Extracurricular Activities.
- 3. Student Engagement during Lectures.
- 4. Responses Obtained from Students, Questionnaire about curriculum and faculty member (Instructor)

#### C. Affective and value goals

C1. Optimization of contaminant transport, treatment and disposal techniques

C2. Behaviour of soil under different types of stresses

C3. Prepare students for successful careers in environmental engineering

D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career managementD3. Articulate personal goals and evaluate progress towards their achievementD4.An ability to identify, formulate, and solve engineering problems

| 10. Cou | 10. Course Structure            |                                                      |                                                                                                          |                    |                                                                                              |
|---------|---------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------|
| Week    | Hours                           | ILOs                                                 | Unit/Module or<br>Topic Title                                                                            | Teaching<br>Method | Assessment<br>Method                                                                         |
| 1       | 3hrs<br>Theor. and<br>2hrs Lab. | Origin of<br>soils                                   | Mechanical and chemical<br>weathering<br>Water content /<br>Atterberg's (or<br>consistency) limits (Lab) | ,                  | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 2       | 3hrs<br>Theor. and<br>2hrs Lab. | -                                                    | Minerals of particles<br>Water content /<br>Atterberg's (or<br>consistency) limits (Lab)                 | Electronic +Lab    | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 3       | 3hrs<br>Theor. and<br>2hrs Lab. | Constituents<br>of soils                             | Solid, liquid and gaseous<br>phases<br>Water content /<br>Atterberg's (or<br>consistency) limits (Lab)   | Electronic +Lab    | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 4       | 3hrs<br>Theor. and<br>2hrs Lab. |                                                      | Layers of the soil<br>Specific gravity (Lab)                                                             |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 5       | 3hrs<br>Theor. and<br>2hrs Lab. |                                                      | classification of the soil<br>Sieve analysis (particle<br>size distribution) (Lab)                       | Electronic +Lab    | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 6       |                                 | and physical                                         | classification of the soil<br>Sieve analysis (particle<br>size distribution) (Lab)                       |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 7       | 3hrs<br>Theor. and<br>2hrs Lab. | Engineering<br>and physical<br>properties of<br>soil | Gravimetric -volumetric<br>relations<br>Hydrometer analysis<br>(Lab)                                     | Electronic +Lab    | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 8       | 3hrs<br>Theor. and<br>2hrs Lab. | Engineering<br>and physical<br>properties of<br>soil | Gravimetric -volumetric<br>relations<br>Hydrometer analysis<br>(Lab)                                     | Electronic +Lab    | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |

| 0  | 21                              | C - '1                                                 |                                                         |                 |                                                                                              |
|----|---------------------------------|--------------------------------------------------------|---------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------|
| 9  | Theor. and<br>2hrs Lab.         | permeability                                           | Darcy's Law<br>Constant head<br>permeameter (Lab)       | Electronic +Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 10 | 3hrs<br>Theor. and<br>2hrs Lab. | Flow of water<br>through soils                         | Darcy's Law<br>Constant head<br>permeameter (Lab)       | Electronic +Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 11 | 3hrs<br>Theor. and<br>2hrs Lab. | Flow of water<br>through soils                         | Darcy's Law<br>Falling head<br>permeameter (Lab)        | Electronic +Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 12 | 2hrs Lab.                       | under stress                                           | Deformation and factor<br>of safety<br>Compaction (Lab) | Electronic +Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 13 | 2hrs Lab.                       | under stress                                           | Deformation and factor<br>of safety<br>Compaction (Lab) | Electronic +Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 14 | 2hrs Lab.                       | Soil behavior<br>under stress<br>and<br>compressibilit | Deformation and factor<br>of safety<br>Compaction (Lab) | Electronic +Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 15 | 01                              | under stress<br>and<br>compressibilit                  | Deformation and factor<br>of safety<br>Compaction (Lab) | Electronic +Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class,<br>Laboratory reports |
| 16 | 3hrs<br>Theor.                  | v<br>Environmenta<br>l geo-<br>technology              | Environment and soil                                    | Electronic      | Questions during the<br>lectures ,quiz, exam,<br>present in the class,                       |
| 17 | 3hrs<br>Theor.                  | Environmenta<br>l geo-<br>technology                   | Sources of soil pollution                               | Electronic      | Questions during the<br>lectures ,quiz, exam,<br>present in the class,                       |
| 18 | 3hrs<br>Theor.                  | Environmenta<br>1 geo-                                 | Soil and contaminant migration                          | Electronic      | Questions during the<br>lectures ,quiz, exam,<br>present in the class,                       |
| 19 | 3hrs<br>Theor.                  | I geo-                                                 | Soil and contaminant migration                          | Electronic      | Questions during the<br>lectures ,quiz, exam,<br>present in the class,                       |
| 20 | 3hrs<br>Theor.                  | Modeling                                               | Processes governed the contaminant transport            | Electronic      | Questions during the lectures ,quiz, exam,                                                   |
| 21 | 3hrs<br>Theor.                  | Modeling                                               | Processes governed the contaminant transport            | Electronic      | Questions during the<br>lectures ,quiz, exam,<br>present in the class,                       |

| 22 | 3hrs           | Soil erosion                           |                                    | Electronic | Questions during the                                                   |
|----|----------------|----------------------------------------|------------------------------------|------------|------------------------------------------------------------------------|
|    | Theor.         |                                        | Causes                             |            | lectures ,quiz, exam,<br>present in the class,                         |
| 23 | 3hrs<br>Theor. | Soil erosion                           | Consequences                       | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |
| 24 | 3hrs<br>Theor. | Ion exchange<br>in soils               | Definition and description         | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |
| 25 | 3hrs<br>Theor. | Ion exchange<br>in soils               | Distribution of contaminants       | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |
| 26 | 3hrs<br>Theor. | Ion exchange<br>in soils               | Modeling of process                | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |
| 27 | 3hrs<br>Theor. | Soil as an aid<br>to waste<br>disposal | Landfills                          | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |
| 28 | 3hrs<br>Theor. | Soil as an aid<br>to waste<br>disposal | Produced leachate                  | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |
| 29 | 3hrs<br>Theor. | Soil as an aid<br>to waste<br>disposal | Importance of soil for landfilling | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |
| 30 | 3hrs<br>Theor. | Soil as an aid<br>to waste<br>disposal | Spillage                           | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class, |

| 11. Infrastructure         |                                                                                                                                                                                                                                             |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading: | <ol> <li>Contaminant Hydrogeology 1999 by Fetter</li> <li>Geo-environmental Engineering 2000 by Reddi</li> <li>3-2014 HAZARDOUS WASTE REPORT INSTRUCTION:<br/>AND FORMS, Louisiana Department of Environmenta<br/>Quality, 2014.</li> </ol> |

|                                                                     | Contaminant Hydrogeology 1999 by Fetter<br>Craig's Soil Mechanics 2004 |
|---------------------------------------------------------------------|------------------------------------------------------------------------|
| A- Recommended books and references (scientific journals, reports). | Journals<br>1. Journal of contaminant hydrology                        |
| B-Electronic references, Internet sites                             | Available electronic books related to the soil subject.                |

12. The development of the curriculum plan

The development could concentrate on the using familiar software like COMSOL for simulation the migration of contaminant in subsurface environment.

Ministry of Higher Education and Scientific Research Scientific Supervision and Scientific Evaluation Apparatus Directorate of Quality Assurance and Academic Accreditation Accreditation Department



# Academic Program and Course Description Guide

المرحلة الرابعة

**202**3

### Introduction:

The educational program is a well-planned set of courses that include procedures and experiences arranged in the form of an academic syllabus. Its main goal is to improve and build graduates' skills so they are ready for the job market. The program is reviewed and evaluated every year through internal or external audit procedures and programs like the External Examiner Program.

The academic program description is a short summary of the main features of the program and its courses. It shows what skills students are working to develop based on the program's goals. This description is very important because it is the main part of getting the program accredited, and it is written by the teaching staff together under the supervision of scientific committees in the scientific departments.

This guide, in its second version, includes a description of the academic program after updating the subjects and paragraphs of the previous guide in light of the updates and developments of the educational system in Iraq, which included the description of the academic program in its traditional form (annual, quarterly), as well as the adoption of the academic program description circulated according to the letter of the Department of Studies T 3/2906 on 3/5/2023 regarding the programs that adopt the Bologna Process as the basis for their work.

In this regard, we can only emphasize the importance of writing an academic programs and course description to ensure the proper functioning of the educational process.

1

#### **Concepts and terminology:**

**Academic Program Description:** The academic program description provides a brief summary of its vision, mission and objectives, including an accurate

description of the targeted learning outcomes according to specific learning strategies.

<u>Course Description</u>: Provides a brief summary of the most important characteristics of the course and the learning outcomes expected of the students to achieve, proving whether they have made the most of the available learning opportunities. It is derived from the program description.

**Program Vision:** An ambitious picture for the future of the academic program to be sophisticated, inspiring, stimulating, realistic and applicable.

**<u>Program Mission</u>**: Briefly outlines the objectives and activities necessary to achieve them and defines the program's development paths and directions.

**<u>Program Objectives</u>**: They are statements that describe what the academic program intends to achieve within a specific period of time and are measurable and observable.

**Curriculum Structure:** All courses / subjects included in the academic program according to the approved learning system (quarterly, annual, Bologna Process) whether it is a requirement (ministry, university, college and scientific department) with the number of credit hours.

**Learning Outcomes:** A compatible set of knowledge, skills and values acquired by students after the successful completion of the academic program and must determine the learning outcomes of each course in a way that achieves the objectives of the program.

<u>Teaching and learning strategies</u>: They are the strategies used by the faculty members to develop students' teaching and learning, and they are plans that are followed to reach the learning goals. They describe all classroom and extra-curricular activities to achieve the learning outcomes of the program.

#### Academic Program Description Form

University Name: University of Baghdad Faculty/Institute: College of Engineering

3

Scientific Department: Department of Environmental Engineering Academic or Professional Program Name: English Final Certificate Name: ...... Academic System: Polona program Description Preparation Date: File Completion Date: 16–2–2024

Signature: Head of Department Name: Signature: Scientific Associate Name:

Date:

Date:

The file is checked by:

Department of Quality Assurance and University Performance

Director of the Quality Assurance and University Performance Department:

Date:

Signature:

Approval of the Dean

#### 1. Program Vision

The strategic goal is to raise the readiness of the university formations to be distinguished now and in the future. It further aims to bring about a quantum leap in their strategic performance following international standards within the framework of true citizenship and leadership in its various cognitive, and educational research

roles. It also aims to provide community service, upgrade, and strengthen the position of the university within the framework of universities' international rankings, and within the framework of balancing between contemporaneity with modern trends in higher education and preserving originality represented by adhering to the national constants and values of the country.

#### 2. **Program Mission**

English Language Learning Program *(ELLP)* is to help students from all over the world to achieve their personal and academic goals by providing high–quality, individualized English language instruction in a small–classroom setting and warm, welcoming, inclusive, and friendly cultural environment, while also bringing valuable and diverse international student perspectives to the University.

- 3. Program Objectives
  - 1- The aim of this course is to empower students with the language and life skills
  - 2- The integrated skills approach of the course develops the student's self-confidence to
  - 3- succeed in professional and social encounters within an English-speaking global
  - 4- using language to express knowledge of Environment and health impacts hazardous

#### 4. Program Accreditation

Does the program have program accreditation? And from which agency? None

#### 5. Other external influences

Is there a sponsor for the program?

None

| 6. Program Structure |           |              |            |          |
|----------------------|-----------|--------------|------------|----------|
| Program Structure    | Number of | Credit hours | Percentage | Reviews* |
|                      |           |              |            |          |

|                      | Courses |   |       |
|----------------------|---------|---|-------|
| Institution          | 1       | 2 | basic |
| Requirements         |         |   |       |
| College Requirements | 4       | 2 |       |
| Department           | 4       | 2 |       |
| Requirements         |         |   |       |
| Summer Training      | 0       | 0 |       |
| Other                |         |   |       |

\* This can include notes whether the course is basic or optional.

| 7. Program Description |             |             |              |           |
|------------------------|-------------|-------------|--------------|-----------|
| Year/Level             | Course Code | Course Name | Credit Hours |           |
| 2-2024                 | EnE 108     | English     | theoretical  | practical |
|                        |             |             | yes          | 0         |

| 8. Expected learning                                                                                                                                                           | 8. Expected learning outcomes of the program                                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Knowledge                                                                                                                                                                      |                                                                                              |  |  |
| Find and understand<br>information about<br>vocabulary, pronunciation,<br>usage, and grammar in<br>reference texts, online<br>resources, and English<br>language dictionaries, | Become more effective, independent and confident self-directed learners                      |  |  |
| Skills                                                                                                                                                                         |                                                                                              |  |  |
| The integrated skills<br>approach of the course<br>develops the student's self-<br>understanding                                                                               | Understand texts using effective learning strategies for reading<br>and vocabulary building, |  |  |
| using language to express<br>knowledge of Environment<br>and health impacts                                                                                                    | Improve their general skills for study and career management                                 |  |  |
| Ethics                                                                                                                                                                         |                                                                                              |  |  |

| Develop conversational<br>English skills necessary for<br>becoming a contributing<br>participant in small group<br>activities, large group<br>discussions, and oral<br>presentations, | Articulate personal goals and evaluate progress towards their achievement |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Understand texts using<br>effective learning strategies<br>for reading and vocabulary<br>building,                                                                                    | An ability to identify, formulate, and solve engineering problems         |

#### 9. Teaching and Learning Strategies

Lecture and classroom discussion

#### 10. Evaluation methods

Assignments and exams

#### 11. Faculty

#### Faculty Members

| Academic Rank | Specialization |                                       | Special<br>Requirements<br>(if applicable) | • | Number of the teaching staff |          |  |
|---------------|----------------|---------------------------------------|--------------------------------------------|---|------------------------------|----------|--|
|               | General        | Special                               |                                            |   | Staff                        | Lecturer |  |
| Asst. Prof.   | English        | Linguistics/<br>Discourse<br>Analysis |                                            |   | Current faculty<br>mumber    |          |  |

#### **Professional Development**

#### Mentoring new faculty members

The orientation for new faculty members is arranged by the department chair and may consist of a few informal meetings and the distribution of a handbook and other supplementary material. In contrast, approximately one in four colleges have formalized and uniform faculty mentorship programs across all departments.

**Professional development of faculty members** 

In-depth programs included both intensive, multi-day offerings in a short course or retreat format, and extended offerings with multiple sessions spaced over a term, a year, or even longer. These formats typically enrolled a cohort of participants who continued for the entire program.

#### 12. Acceptance Criterion

central admission

#### 13. The most important sources of information about the program

-New Headway Plus [Beginner] by John and Liz Soars, Oxford: Oxford University Press (2006),

-Morphy, A.J (1983) English Grammar in use. Cambridge: CUP

https://www.englishclub.com/grammar/verb-tenses.htm

https://www.ego4u.com/en/cram-

www.perfect-english-grammar.com/verb-tenses.htm

https://en.wikipedia.org/wiki/Grammatical\_tense

14. Program Development Plan

The development could be done by consulting more resources and increase lecture length to 3 hours weekly

| Program Skills Outline |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |
|------------------------|----------------|---------|-------|-----------|----|----|--------|-------|-----------|-----------|--------|----------|-----|-----------|--|
|                        |                |         |       |           |    |    | Req    | uired | progr     | am Lo     | earnin | g outcon | nes |           |  |
|                        | Course<br>Name |         | Knov  | Knowledge |    |    | Skills |       |           | Ethics    |        |          |     |           |  |
|                        |                |         | A1    | A2        | A3 | A4 | B1     | B2    | <b>B3</b> | <b>B4</b> | C1     | C2       | С3  | <b>C4</b> |  |
| 2024/level 2           | EnE 108        | English | Basic |           |    | •  |        |       | •         |           |        | •        |     |           |  |
|                        |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |
|                        |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |
|                        |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |
|                        |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |
|                        |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |
|                        |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |
|                        |                |         |       |           |    |    |        |       |           |           |        |          |     |           |  |

• Please tick the boxes corresponding to the individual program learning outcomes under evaluation.

## **Course Description Form**

| Strategy<br>10. Course<br>Week | Structure Hours                       | Required                      | Unit or subject name                                                                                                                                  | Learning                                                                                                                                                           | Evaluation                                                                                                |
|--------------------------------|---------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                |                                       |                               |                                                                                                                                                       |                                                                                                                                                                    |                                                                                                           |
|                                |                                       | Lecture an                    | d classroom discussion                                                                                                                                |                                                                                                                                                                    |                                                                                                           |
| 9. Teach                       | ing and L                             | earning Strate                | •                                                                                                                                                     |                                                                                                                                                                    |                                                                                                           |
| Name<br>Email                  | : Asst. Pro<br>: nagham<br>e Objectiv | of. Nagham A<br>.ali@coeg.uol | A1) Find and<br>vocabulary, p<br>in reference to<br>language dict<br>(A2) Develop<br>necessary for<br>participant in<br>discussions, a<br>(A3) Unders | understand inform<br>ronunciation, usa<br>exts, online resou<br>ionaries,<br>o conversational E<br>becoming a contr<br>small group active<br>and oral presentation | mation about<br>ge, and grammar<br>rces, and English<br>English skills<br>ributing<br>vities, large group |
| 6. Numb<br>2                   | er of Crea                            | lit Hours (Tota               | al) / Number of Units (                                                                                                                               | Total)                                                                                                                                                             |                                                                                                           |
| 5. Availa                      | able Atten                            | dance Forms:                  | attendance and Google                                                                                                                                 | e classroom                                                                                                                                                        |                                                                                                           |
| 4. Descr                       | iption Pro                            | eparation Dat                 | te:16/2/2024                                                                                                                                          |                                                                                                                                                                    |                                                                                                           |
| 3. Seme                        | ster / Yea                            | r: Semester                   |                                                                                                                                                       |                                                                                                                                                                    |                                                                                                           |
| 2. Cours                       | e Code:                               | EnE 108                       |                                                                                                                                                       |                                                                                                                                                                    |                                                                                                           |
|                                |                                       |                               |                                                                                                                                                       |                                                                                                                                                                    |                                                                                                           |
|                                |                                       |                               |                                                                                                                                                       |                                                                                                                                                                    |                                                                                                           |

|                                                                                                                                                    |                                                                                             | Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |                                   |                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------|
| Veek 1<br>Veek 2<br>Veek 3<br>Veek 4<br>Veek 5<br>Veek 6<br>Veek 7<br>Veek 8<br>Veek 9<br>eek 10<br>eek 11<br>eek 12<br>eek 13<br>eek 14<br>eek 15 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | <ul> <li>(A) Finding and<br/>understanding<br/>information abo<br/>vocabulary,<br/>pronunciation,<br/>usage, and<br/>grammar in<br/>reference texts,<br/>online resources<br/>and English<br/>language<br/>dictionaries,</li> <li>(B) Developing<br/>conversational<br/>English skills<br/>necessary for<br/>becoming a<br/>contributing<br/>participant in sn<br/>group activities,<br/>large group<br/>discussions, and<br/>oral presentatio</li> <li>(C) Understandi<br/>texts using effec<br/>learning structu</li> </ul> | Introduction to the materi<br>Unit 1<br>Unit2,3<br>Unit 4,5<br>Quiz<br>Unit6,7<br>Midterm exam<br>Unit 8,9<br>Quiz<br>General discussion<br>Unit 10,&assignment<br>Unit 11,12<br>Composition Writ<br>discussion<br>Unit13,14<br>English for Spec<br>Purposes | Lecture and classro<br>discussion | Questions<br>during<br>lectures , q<br>exam, preser<br>the class |

#### 11. Course Evaluation

Distributing the score out of 100 according to the tasks assigned to the student such as daily preparation, daily oral, monthly, or written exams, essays .... etc

|                 |                 | Time/Num<br>ber  | Weight (Marks) |
|-----------------|-----------------|------------------|----------------|
|                 | Quizzes         | 2                | 20% (20)       |
| Formative       | Assignments     | 1                | 10% (10)       |
| assessment      | Projects / Lab. | 0                | 0              |
|                 | composition     | 1                | 10% (10)       |
| Summative       | Midterm Exam    | 2 hr             | 10% (10)       |
| assessment      | Final Exam      | 2hr              | 50% (50)       |
| Total assessmen | nt              | 100% (100 Marks) |                |

#### 12. Learning and Teaching Resources

| (1) New Headway Plus [Beginner] by<br>John and Liz Soars, Oxford: Oxford<br>University Press (2006),                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1) New Headway Plus [Beginner] by Jo<br>and Liz Soars, Oxford: Oxford University Pr<br>(2006),                                                                                                                                                     |
| <ul> <li>(2) Modern scientific articles from the<br/>news related to the students' specialty, and</li> <li>(3) Internet links and videos related to<br/>topics discussed in General English and Engl<br/>for Specific Purposes lectures</li> </ul> |
| Dictionaries and supplies supplementary                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                    |
| https://www.englishclub.com/grammar/verb-<br>tenses.htm         https://www.ego4u.com/en/cram-<br>www.perfect-english-grammar.com/verb-<br>tenses.htm         tenses.htm         https://en.wikipedia.org/wiki/Grammatical_t         se            |
|                                                                                                                                                                                                                                                    |

#### **TEMPLATE FOR COURSE SPECIFICATION**

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Ass.Prof. Dr. Hussain majeed flayeh

#### **COURSE SPECIFICATION**

Full knowledge of air pollution, regulations, properties of air pollutant, dispersion of air pollutant, and air pollution control

| 1. Teaching Institution                                                                                                             | University of Baghdad/ College of Engineering |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|
| 2. University Department/Centre                                                                                                     | Environmental Engineering Department          |  |  |  |  |  |
| 3. Course title/code                                                                                                                | Air pollution                                 |  |  |  |  |  |
| 4. Modes of Attendance offered                                                                                                      | 2 days per week electronic                    |  |  |  |  |  |
| 5. Semester/Year                                                                                                                    | Year                                          |  |  |  |  |  |
| 6. Number of hours tuition (total)                                                                                                  | 90 h                                          |  |  |  |  |  |
| 7. Date of production/revision of this specification                                                                                | 2023                                          |  |  |  |  |  |
| 8. Aims of the Course                                                                                                               |                                               |  |  |  |  |  |
| 1- Understanding air pollution, properties, etc.                                                                                    |                                               |  |  |  |  |  |
| 2- Understanding the atmospheric metrolog                                                                                           | y, dispersion of air pollutant.               |  |  |  |  |  |
| <ul><li>3- Understanding air pollutant control</li><li>4- Become aware of Environment and health impacts of air pollution</li></ul> |                                               |  |  |  |  |  |
|                                                                                                                                     | impacts of an ponution                        |  |  |  |  |  |
|                                                                                                                                     |                                               |  |  |  |  |  |
|                                                                                                                                     |                                               |  |  |  |  |  |
|                                                                                                                                     |                                               |  |  |  |  |  |

9. Learning Outcomes, Teaching ,Learning and Assessment Method
A-Cognitive goals.

A1. After completion of the course students should be able to characterization of air pollutants&dispersion A2. Effects of air pollution on human, plants, materials, and environment.

A3. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

B. The skills goals special to the course.

B1.Understand health and environmental issues related to air pollution and dispersionB2. Understanding the dispersion of air pollutants models, and air pollution controls

B3.underatanding Global climate change, stratospheric depletion, and Greenhouse gases

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving, Reports on environmental problems related to air pollution

C. Affective and value goals

C1. Calculations on air pollutant transport, equipment used to control and techniques

C2. Effect of air pollution in Environment (clamite change, stratosphere ozone depletion, ... C3.Prepare students for successful careers in environmental engineering

Teaching and Learning Methods

Intensive studies of regulations

#### Assessment methods

#### Case studies

- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
- D1. Become more effective, independent and confident self-directed learners
- D2. Improve their general skills for study and career management
- D3. Articulate personal goals and evaluate progress towards their achievement
- D4. An ability to identify, formulate, and solve engineering problems

| 10. Cou | rse Stru  | cture                                              |                                                                                                                          |                    |                                                                       |
|---------|-----------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------|
| Week    | Hour<br>s | ILOs                                               | Unit/Module or<br>Topic Title                                                                                            | Teaching<br>Method | Assessment<br>Method                                                  |
| 1       | 3         | Introduction<br>&Definition<br>of air<br>pollution | General definition of air<br>pollutant, sources, and<br>criteria pollutants                                              |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2       | 3         | Properties of<br>air pollutants                    | General properties                                                                                                       |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3       | 3         | Properties of<br>air pollutants                    | Criteria Pollutants                                                                                                      |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4       | 3         | Sources of air<br>pollutants                       | Urban & industrial sources,<br>Transportation, Process<br>emissions,                                                     |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5       | 3         | Effect of air<br>pollution                         | Effect on human health<br>Effect on vegetation and<br>animalsEffect on<br>material and structures<br>Atmospheric effects |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 6       | 3         | Meteorology                                        | Atmospheric stability                                                                                                    |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7       | 3         | Meteorology                                        | Stability and plume<br>behavior                                                                                          |                    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 8  | 3 | Dispersion                   | Dispersion of point       | Electronic | Questions during the                          |
|----|---|------------------------------|---------------------------|------------|-----------------------------------------------|
| 0  | 5 | modeling                     | source pollutants         | Electronic | - 0                                           |
|    |   | modeling                     | Effect of inversion layer |            | lectures ,quiz, exam,<br>present in the class |
|    |   |                              |                           |            | present in the class                          |
| 9  | 3 | Dispersion                   | Line source dispersion    | Electronic | Questions during the                          |
| -  | C | modeling                     | model                     |            | lectures ,quiz, exam,                         |
|    |   | Ŭ                            |                           |            | present in the class                          |
|    |   |                              |                           |            | r                                             |
|    |   |                              |                           |            |                                               |
| 10 |   |                              |                           |            |                                               |
| 10 | 3 | Dispersion                   | Area source dispersion    | Electronic | Questions during the                          |
|    |   | modeling                     | model                     |            | lectures ,quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |
|    |   |                              |                           |            |                                               |
| 11 | 3 | Dispersion                   | Indoor air pollution      | Electronic | Questions during the                          |
|    |   | modeling                     |                           |            | lectures ,quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |
|    |   |                              |                           |            |                                               |
| 12 | 3 | Mid. Exam                    |                           | Electronic | Questions during the                          |
|    |   |                              |                           |            | lectures, quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |
|    |   |                              |                           |            |                                               |
| 13 | 3 | Sampling                     | Air pollutant sampling    | Electronic | Questions during the                          |
| 15 |   | oumping                      |                           |            | lectures ,quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |
|    |   |                              |                           |            |                                               |
| 14 | 3 | Analysis                     | Air pollutant analysis    | Electronic | Questions during the                          |
|    |   | equipment's                  | equipment's               |            | lectures ,quiz, exam,                         |
|    |   |                              | Film for sampling and     |            | present in the class                          |
|    |   |                              | analysis equipment        |            |                                               |
| 15 |   | Half-year                    |                           | Electronic | Questions during the                          |
|    |   | Break                        |                           |            | lectures ,quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |
| 16 |   | Half-year                    |                           | Electronic | Questions during the                          |
|    |   | Break                        |                           |            | lectures ,quiz, exam,                         |
| 17 |   | Global                       | What is it?               | Electronic | present in the class                          |
| 17 |   | Environmental                | Earth as a Blackbody      | Electronic | Questions during the lectures ,quiz, exam,    |
|    |   | Problems                     | Laith as a blackbody      |            | present in the class                          |
| 18 |   | Due to Air<br>Global warming | Effect of greenhouse      | Electronic | Questions during the                          |
| 10 |   | (Green house                 | gases                     | Licetionic | lectures ,quiz, exam,                         |
|    |   | effect)                      |                           |            | present in the class                          |
| 19 |   | Ozone depletion              |                           | Electronic | Questions during the                          |
|    |   |                              |                           |            | lectures, quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |
| 20 |   | Acid Rain                    |                           | Electronic | Questions during the                          |
|    |   |                              |                           |            | lectures ,quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |
| 21 |   | Air pollution                | Introduction to air       | Electronic | Questions during the                          |
|    |   | control                      | pollution control         |            | lectures ,quiz, exam,                         |
|    |   |                              |                           |            | present in the class                          |

| 22 | Control                  |                         | Electronic | Questions during the                          |
|----|--------------------------|-------------------------|------------|-----------------------------------------------|
|    | equipment's for          |                         |            | lectures ,quiz, exam,                         |
|    | particulate mater        |                         |            | present in the class                          |
| 23 | Settling                 | General description and | Electronic | Questions during the                          |
|    | chamber                  | design                  |            | lectures ,quiz, exam,                         |
|    |                          |                         |            | present in the class                          |
| 24 | Cyclone                  | General description and | Electronic | Questions during the                          |
|    |                          | design                  |            | lectures ,quiz, exam,                         |
|    |                          |                         |            | present in the class                          |
| 25 | Filters                  | General description and | Electronic | Questions during the                          |
|    |                          | design                  |            | lectures ,quiz, exam,                         |
|    |                          |                         |            | present in the class                          |
| 26 | Electrostatic            | General description and | Electronic | Questions during the                          |
|    | precipitators            | design                  |            | lectures ,quiz, exam,                         |
| 27 |                          |                         |            | present in the class                          |
| 27 | Control                  |                         | Electronic | Questions during the                          |
|    | equipment's<br>for gases |                         |            | lectures ,quiz, exam,<br>present in the class |
| 28 | Absorption               | General description and | Electronic |                                               |
| 20 | Absorption               | design                  | Electronic | Questions during the lectures ,quiz, exam,    |
|    |                          | design                  |            | present in the class                          |
| 29 | Adsorption               | General description and | Electronic | Questions during the                          |
| 27 | Ausorption               | design                  | Licetionic | lectures ,quiz, exam,                         |
|    |                          | uco.Bit                 |            | present in the class                          |
| 30 | condensation             | General description and | Electronic | Questions during the                          |
|    |                          | design                  |            | lectures ,quiz, exam,                         |
|    |                          |                         |            | present in the class                          |
| 31 | incinerators             | General description and | Electronic | Questions during the                          |
|    |                          | design                  |            | lectures ,quiz, exam,                         |
|    |                          |                         |            | present in the class                          |
| 32 | Exam.                    |                         | Electronic | Questions during the                          |
|    |                          |                         |            | lectures ,quiz, exam,                         |
|    |                          |                         |            | present in the class                          |

| 11. Infrastructure        |                                                                                                       |
|---------------------------|-------------------------------------------------------------------------------------------------------|
| I Books Required reading. | Environmental pollution and control Engineering by C.S Rao<br>(1999).                                 |
|                           | Environmental Engineering by G. Kiely(1996)                                                           |
|                           | Air pollution, meteorology and dispersion by S.Pal Arya(1999).<br>Air pollution by H.C. Perkins(1974) |

| A- Recommended books and references (scientific journals, reports). | Journals<br>1. International Journal of Environment and Waste<br>Management<br>2. Air pollution                                                                                                       |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B-Electronic references, Internet sites                             | Air pollution control engineering / edited by<br>Lawrence K. Wang, Norman C This volume of Air<br>The Emergence of Air Pollution Science,<br>Engineering, and nuclear, and noise areas;<br>biologists |

12. The development of the curriculum plan

The development could concentrate on more applications and mathematical modeling and details of air pollutants control equipment design.

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Instructor Hayder Muhssin Rashid

# **COURSE SPECIFICATION**

Fully understanding the relationship between theory and applied control dynamics in the fourth stage of the Environmental Engineering as well as constructing MM to investigate the forcing functions/ response

| 1. Teaching Institution                              | University of Baghdad/ College of<br>Engineering |
|------------------------------------------------------|--------------------------------------------------|
| 2. University Department/Centre                      | Environmental Engineering Department             |
| 3. Course title/code                                 | Control dynamics in Environmental Eng.           |
| 4. Modes of Attendance offered                       | Electronic lectures are delivered twice a week   |
| 5. Semester/Year                                     | Annual                                           |
| 6. Number of hours tuition (total)                   | 75 hours (3 hours a week)                        |
| 7. Date of production/revision of this specification |                                                  |

8. Aims of the Course

1- Appreciate significance of control for dynamic systems.

2- Understand the dynamic characteristics, transfer functions, forcing functions and responses of systems, comprising various elements, mathematically and physically

3- Differentiate between dynamics of systems in an open- loop or a closed-loop situation.

4- Understand the basics of feedback control loops, their block diagram algebra, responses as regulatory/servo loops, controller's modes of action, final control elements and stability differentiation.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A-Cognitive goals.

A1. Making the student to be fully aware of how control variables being manupilated
 A2. Making use of up-to-date criteria dealing with analog and digitals conrols.
 A3. Using of most advanced electronic devices in controllers.

B. The skills goals special to the course.

B1- Understanding the nature and behavior of controllers in Env. Eng applications. B2. Making Laplace transforms in solving initial values problems.

B3- Constructing the block diagrams for the dynamic systems

B4- Making stability investigation for the given control problems.

B5- Relating the theory to applied control dynamics.

Teaching and Learning Methods

Extensive description of case studies and applications regarding the Environmental Engineering studies, Lectures, homework and assignments tests, and exams, class oral conservations, questions and discussions, comparison between theory and applications and conducting experiments in labs.

Assessment methods

Homework related to problem solving, student participation through class session, preparation of reports, quizzes, monthly exams, student attendance, and lucrative encouragement.

C. Affective and value goals

C1. Getting optimum values through the applications of control disturbances and transfer functions.

C2. Facilitate the algebraic and solving problems that might be encountered in Teaching and Learning Methods

Teaching and Learning Methods

Intensive studies of regulations

| Assessment Methods                                                                                                 | $\left  \right $ |
|--------------------------------------------------------------------------------------------------------------------|------------------|
| Case studies                                                                                                       |                  |
| D. General and rehabilitative transferred skills (other skills relevant to employability and personal development) |                  |
| D1. Become more effective, independent and confident self-directed learners                                        |                  |
| D2. Improve their general skills for study and career management                                                   |                  |
| D3. Articulate personal goals and evaluate progress towards their achievement                                      |                  |
| D4. An ability to identify, formulate, and solve engineering problems                                              |                  |

|      | 10. Course Structure                                                                        |                    |                                                                               |      |            |
|------|---------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------|------|------------|
| Week | Assessment Method                                                                           | Teaching<br>Method | Unit/Module<br>or Topic Title                                                 | ILOs | Hours      |
| 1    | Making questions during<br>the lectures, quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Making an<br>overview of the<br>Laplace<br>Transforms                         | 1&2  | 3 (Theory) |
| 2    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Constructing the<br>MM through<br>material and<br>energy balances             | 1 &2 | 3 (Theory) |
| 3    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Determination of<br>the initial and<br>final values                           |      | 3 (Theory) |
| 4    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Solving the<br>driving force/<br>response<br>problems.                        | 1 &2 | 3 (Theory) |
| 5    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Constructing the block diagrams                                               | 1 &2 | 3 (Theory) |
| 6    | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic         | Investigating the<br>system stability<br>using Routh and<br>Nyquist criteria. | 1 &2 | 3 (Theory) |

| 7  | Making questions during<br>the lectures ,quizzes,<br>exams, and attendance<br>in the class. | Electronic<br>and lab<br>attendance | Determining the<br>time constant in<br>thermometer                  |            | 3 (Theory)<br>3 (Lab) |
|----|---------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------|------------|-----------------------|
| 8  | Making questions during the lectures, quizzes,                                              | Electronic<br>and lab<br>attendance | Determining the<br>time constant in<br>liquid level tanks           |            | 3 (Theory)<br>3 (Lab) |
| 9  | Making questions during<br>the lectures, quizzes,<br>exams, and attendance<br>in the class. | Electronic<br>and lab<br>attendance | Determining the<br>time constant in<br>heating tanks                |            | 3 (Theory)<br>3 (Lab) |
| 10 | Making questions during<br>the lectures, quizzes,<br>exams, and attendance<br>in the class. | Electronic<br>and lab<br>attendance | Determining the<br>time constant in<br>interacting tanks            | 1 &2 + lab | 3 (Theory)<br>3 (Lab) |
| 11 | Making questions during<br>the lectures, quizzes,<br>exams, and attendance<br>in the class. | Electronic<br>and lab<br>attendance | Control Valves<br>and identifying<br>the open/close to<br>air types |            | 3 (Theory)<br>3 (Lab) |
|    |                                                                                             |                                     |                                                                     |            |                       |
|    |                                                                                             |                                     |                                                                     |            |                       |
|    |                                                                                             |                                     |                                                                     |            |                       |
|    |                                                                                             |                                     |                                                                     |            |                       |

| 11. Infrastructure                                                        |                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:                                                | <ol> <li>Modern Control Engineering, OGATA, 4<sup>th</sup> ed., 2014.</li> <li>Feedback control system and synthesis, John D'Azzo<br/>and H. Houpis, international dition, 1965.</li> <li>Principles of control systems, S.P.Eugene and Joseph<br/>Babu, S.Chand, 14<sup>th</sup> ed., 2019.</li> </ol> |
| 2. Main references (sources)                                              | Process systems analysis and Control, Coughanowr, 2 <sup>nd</sup><br>ed., McGraw-Hill, 1991.                                                                                                                                                                                                            |
| A- Recommended books<br>and references (scientific<br>journals, reports). | Journals of air pollution controls and environment<br>protection and any textbooks on control dynamics                                                                                                                                                                                                  |
| B-Electronic references,<br>Internet<br>sites                             | https://www.amazon.com/Modern-Control-Engineering-Katsuhiko-<br>Ogata/dp/0136156738<br>https://www.amazon.com/Feedback-Synthesis-Electrical-Electronic-<br>Engineering/dp/0070851506<br>https://www.amazon.com/Process-Systems-Analysis-Coughanowr-1991-<br>08-01/dp/B01FKRFT8K                         |

12. The development of the curriculum plan

The development must impose field visits for the students to the chemical plants in order to make them well acquainted on the process dynamics and how they be controlled as well as make them fully aware of the connection between the theoretical material and its applications.



## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Assisst. Prof. Dr. Hyader M. Hameed

# **COURSE SPECIFICATION**

# Full knowledge Environmental management, regulations, legislations, laws, EMP, ESIA, RISK ASSESSMENT, ENVIRONMNETAL PERFORMANCE.

| 1. Teaching Institution                                                                       | College of engineering        |
|-----------------------------------------------------------------------------------------------|-------------------------------|
| 2. University Department/Centre                                                               | Environmental Eng.Dept.       |
| 3. Course title/code                                                                          | Environmental management      |
| 4. Modes of Attendance offered                                                                | 2 hours per week              |
| 5. Semester/Year                                                                              | year                          |
| 6. Number of hours tuition (total)                                                            | 56 hr.                        |
| 7. Date of production/revision of this specification                                          | 2023                          |
| 8. Aims of the Course                                                                         |                               |
| 1-implementation of the sustainability princip                                                |                               |
| 2-conducting a knowledge of risk managemen                                                    |                               |
| 3-applying of the EIA ,ESMP principles for day<br>4-aquaire a good experience in the WQI,AQI, |                               |
| 4-aquane a good experience in the wQI,AQI,                                                    | EC, and EFT for al activities |
|                                                                                               |                               |
|                                                                                               |                               |
|                                                                                               |                               |

# 9. Learning Outcomes, Teaching ,Learning and Assessment Methode

| A1. After completion of the year students should be able to conduct the reporting and management<br>Analysis for the projects                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A2. Auditing reporting periodically for the major polluted activities.                                                                                                        |
| A3. Conducting the risk management ,WQI,AQI,EPI for any activity                                                                                                              |
|                                                                                                                                                                               |
| В.                                                                                                                                                                            |
| B1.Understand risk management, environmental                                                                                                                                  |
| policies related to any activity.                                                                                                                                             |
| B2.conducting different reports regarding                                                                                                                                     |
| ISO14001,environmental auditing and monitoring<br>B3.reporting as WQI,AQI,EPI with all related                                                                                |
| management issues                                                                                                                                                             |
| B3.be aware of all related risk management for the                                                                                                                            |
| dominant activities.                                                                                                                                                          |
| Teaching and Learning Methods                                                                                                                                                 |
| Class lecturing ,site visits, case studies applications                                                                                                                       |
| Assessment methods                                                                                                                                                            |
| 1.national case studies and problems                                                                                                                                          |
| 2.homeworks                                                                                                                                                                   |
| 3.reporting                                                                                                                                                                   |
| C. Affective and value goals:                                                                                                                                                 |
| C1.to be more aware of laws, regulations and instructions.<br>C2.the students be more succeeded in the good environmental management<br>programs in environmental engineering |
| Teaching and Learning Methods                                                                                                                                                 |
| Learning of laws, regulations, legislations, studying the actual and real cases.                                                                                              |
| Learning of Taws, regulations, legislations, studying the actual and real cases.                                                                                              |
| Assessment methods                                                                                                                                                            |
| 1.homeworks                                                                                                                                                                   |
|                                                                                                                                                                               |
| 2.reporting<br>3.group discussion                                                                                                                                             |

4. Virtual assessment.

- D. General and rehabilitative transferred skills(other skills relevant to employability and personal development) D1. Improve their knowledge, awareness, motive and skills for environmental
- management
- D2.learning how to be good decision makers regarding any action related to environmental problemsD3. Learn how to make, EMP, ESIA, WQI, AQI, RAR, environmental
- monitoring and auditing

| 10. Course Structure |       |                                 |                                                                               |                       |                                        |  |
|----------------------|-------|---------------------------------|-------------------------------------------------------------------------------|-----------------------|----------------------------------------|--|
| Week                 | Hours | ILOs                            | Unit/Module or<br>Topic Title                                                 | Teachin<br>g<br>Metho | Assessm<br>ent<br>Meth                 |  |
| 1                    | 2     | Definition<br>and<br>applicatio | Environmental management                                                      | Electronic            | Exams<br>,quiz,reports,<br>discussions |  |
| 2                    | 2     | Report<br>structure             | EMP reporting                                                                 | Electronic            | Exams<br>,quiz,reports,<br>discussions |  |
| 3                    | 2     | Report<br>structure             | ESIA reporting                                                                | Electronic            | Exams<br>,quiz,reports,                |  |
| 4                    | 2     | structure                       | EMP, matrix                                                                   | Electronic            | Exams<br>,quiz,reports,                |  |
| 5                    | 2     | Matrix                          | WQI matrix                                                                    | Electronic            | Exams                                  |  |
| 6                    | 2     | Matrix                          | AQI matrix                                                                    | Electronic            | Exams                                  |  |
| 7                    | 2     | Index<br>componen               | Environmental performance index                                               | Electronic            | Exams<br>.guiz.reports.                |  |
| 8                    | 2     |                                 | Risk assessment reporting                                                     | Electronic            | Exams                                  |  |
| 9                    | 2     | structure                       | ISO 14001                                                                     | Electronic            | Exams                                  |  |
| 10                   | 2     | structure                       | ISO14003,                                                                     | Electronic            | Exams                                  |  |
| 11                   | 2     | methodolo                       | Environmental auditing                                                        | Electronic            | Exams                                  |  |
| 12                   | 2     | methodolo<br>gy                 | Environmental monitoring                                                      | Electronic            | Exams<br>,quiz,reports,                |  |
| 13                   | 2     | methodolo                       | ESIA matrix                                                                   | Electronic            | Exams                                  |  |
| 14                   | 2     | structure                       | ISO14004                                                                      | Electronic            | Exams                                  |  |
| 15                   | 2     |                                 | <b>ISO 14063</b> Environmental communication - Guidelines and examples        | Electronic            | Exams<br>,quiz,reports,<br>discussions |  |
| 16                   | 2     | structure                       | <b>ISO 14050</b> Environmental management - Vocabulary; terms and definitions | Electronic            | Exams<br>,quiz,reports,<br>discussions |  |

| 17 | 2 |           | ISO<br>14020 to 14025 Environmental<br>labels and declarations                                    | Exams<br>,quiz,reports,<br>discussions |
|----|---|-----------|---------------------------------------------------------------------------------------------------|----------------------------------------|
| 18 | 2 | structure | <ul> <li>ISO 14005 Guidelines for<br/>a flexible approach to<br/>phased implementation</li> </ul> | Exams<br>,quiz,reports,<br>discussions |

| 11. Infrastructure                                                  |                                                                                                                                                                                                     |  |  |  |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1. Books Required reading:                                          | <ol> <li>Wastewater treatment concept, G.HKARIA</li> <li>Water and Wastewater Treatment Technologies</li> <li>BUUI.X</li> </ol>                                                                     |  |  |  |
| 2. Main references (sources)                                        | As above                                                                                                                                                                                            |  |  |  |
| A- Recommended books and references (scientific journals, reports). | Journal of water , by elsiever                                                                                                                                                                      |  |  |  |
| B-Electronic references, Internet sites                             | https://www.process.st/environmental-management/<br>https://www.epa.gov/ems/learn-about-environmental-<br>management-systems<br>https://www.era-environmental.com/blog/environmental-<br>management |  |  |  |

12. The development of the curriculum plan

The development could concentrate on more applications



## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# **Course Instructor: Asst. prof. Dr. Mohanad J. M-Ridha COURSE SPECIFICATION**

The course offers specialization in selected areas of Learning the basic principles of geographic information science, satellite imagery, production of environmental maps and geographic information base. Information about maps and satellite images, processing satellite and aerial images, learning Arc view program, making environmental maps

| 1. Teaching Institution                              | University of Baghdad /College of<br>Engineering               |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------|--|--|--|
| 2. University Department/Centre                      | Environmental Engineering Department                           |  |  |  |
| 3. Course title/code                                 | GIS EnE                                                        |  |  |  |
| 4. Modes of Attendance offered                       | Semester System: They attend in electronic mode 4 hrs. a Week. |  |  |  |
| 5. Semester/Year                                     | Semester                                                       |  |  |  |
| 6. Number of hours tuition (total)                   | 60 hrs./ 4 hrs per week                                        |  |  |  |
| 7. Date of production/revision of this specification | 2023                                                           |  |  |  |
| 8. Aims of the Course                                |                                                                |  |  |  |

The main objectives of the course are:

1. To understand GIS fundamentals,

2. To understand the principles, instrumentation and applications of GIS.

3. To perform analysis and calculations with ease.

# 9. Learning Outcomes, Teaching ,Learning and Assessment Method

# A- Cognitive goals.

# At the end of the year the students should gain:

- A1. ArcMap and Arc Catalog
- A2. Arc Catalog tools.
- A3. Raster and vector graphics.
- A4. Learning Remote sensing.
- A5. Georeferenced, line, area, point

A6. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

# B. The skills goals special to the course

B1. The principles, instrumentation and applications of GIS.

**B2.** Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

# **Teaching and Learning Methods**

- 1- Lectures.
- 2- Homework and Assignments.
- 3- Tests and Exams.
- 4- In-Class Questions and Discussions.
- 5- Connection between Theory and Application.
- 6- In- and Out-Class oral conservations.

# **Assessment Methods**

- 1. Examinations, Tests, and Quizzes.
- 2. Student Engagement during Lectures.

**3**. Responses Obtained from Students, Questionnaire about curriculum and faculty member (Instructor).

- 4. Home work related to problem solving.
- C. Affective and value goals
- C1. Applicable skills to learn geographic information science, satellite imagery,
- production of environmental maps and geographic information base.
- C2. processing satellite and aerial images.
- C3. Learning Arc view program, making environmental maps.
- C4. Prepare students for successful careers in environmental engineering.

### Teaching and Learning Methods

Intensive studies of regulations

### Assessment methods

## Case studies

D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4. An ability to identify, formulate, and solve engineering problems.

| 10. Cours | 10. Course Structure |        |                                                  |                    |                                                                       |  |
|-----------|----------------------|--------|--------------------------------------------------|--------------------|-----------------------------------------------------------------------|--|
| Week      | Hours                | ILOs   | Unit/Module or Topic<br>Title                    | Teaching<br>Method | Assessment Method                                                     |  |
| 1         | 2 (Theo.)            | 1&2    | Review of fundamental concepts of GIS            | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2         | 2 (Theo.)            | 1 &2   | ArcMap and Arc Catalog<br>Application on GIS     | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3         | 2 (Theo.)            | 1 &2   | Satellite image<br>Application on GIS            | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4         | 2 (Theo.)            | 1 &2   | Arc Catalog tools<br>Application on GIS          | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 5         | 2 (Theo.)            | 1 &2   | Raster and vector graphics<br>Application on GIS | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 6         | 2 (Theo.)            | 1,2,&3 | Georeferenced mapping<br>Application on GIS      | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 7         | 2 (Theo.)            | 1,2,&3 | Create simple<br>environmental project           | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 8         | 2 (Theo.)            | 2,3 &4 | Create simple<br>environmental project           | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 9  | 2 (Theo.) | 2,3 &4 | Georeferenced, line, area,<br>point<br>Application on GIS | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|-----------|--------|-----------------------------------------------------------|------------|-----------------------------------------------------------------------|
| 10 | 2 (Theo.) |        | Examination                                               | Electronic |                                                                       |
| 11 | 2 (Theo.) | 2,3 &4 | Insert table and image in<br>ArcMap<br>Application on GIS | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 2 (Theo.) | 2,3 &4 | Database management<br>Application on GIS                 | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 2 (Theo.) |        | Exam                                                      | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 2 (Theo.) | 2,3 &4 | Review the subjects                                       | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 15 | 2 (Theo.) | 2,3 &4 | Summary and questions                                     | Electronic | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure                                                  | 11. Infrastructure                                                                                                                          |  |  |  |  |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1. Books required reading:                                          | <ol> <li>Rolf A.de by, et al., (2004)"principles of<br/>Geographic Information system", ITC<br/>Educational textbook series</li> </ol>      |  |  |  |  |
| 3. Main references (sources)                                        | <ol> <li>Bai Tian , (2016) GIS Technology<br/>Applications in Environmental and Earth<br/>Sciences 1st Edition</li> </ol>                   |  |  |  |  |
| A- Recommended books and references (scientific journals, reports). | 1. Xuan Zhu, (2016) GIS for Environmental<br>Applications A practical approach                                                              |  |  |  |  |
| B-Electronic references, Internet sites                             | https://www.springer.com/gp/book/9783030213<br>435<br>https://www.academia.edu/21312446/Applicatio<br>n_of_GIS_in_Environmental_Engineering |  |  |  |  |

12. The development of the curriculum plan Not to relay on traditional examinations but the creation of reports following the reading of textbooks. These reports are validated and transformed into academic credits for graduation purposes.

# HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

# Course Instructor : Dr. Ziad Tark Abd Ali

# **COURSE SPECIFICATION**

Full knowledge of groundwater: definition, creation, characteristics, pollution, and some remediation methods

| 1. Teaching Institution                                                                  | University of Baghdad/ College of Engineering    |  |  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|--|--|
| 2. University Department/Centre                                                          | Environmental Engineering Department             |  |  |  |  |  |
| 3. Course title/code                                                                     | Groundwater pollution                            |  |  |  |  |  |
| 4. Modes of Attendance offered                                                           | 1 day per week electronic                        |  |  |  |  |  |
| 5. Semester/Year                                                                         | Year                                             |  |  |  |  |  |
| 6. Number of hours tuition (total)                                                       | 60 h                                             |  |  |  |  |  |
| 7. Date of production/revision of this specification                                     | 2023                                             |  |  |  |  |  |
| 8. Aims of the Course                                                                    |                                                  |  |  |  |  |  |
| 1- Groundwater hydrology studies the move                                                | ment of underground water in the saturated zone. |  |  |  |  |  |
| 3- Analytical solutions to the classic steady-                                           | state and transient flow problems in well        |  |  |  |  |  |
| 3 Understanding of physical factors control                                              |                                                  |  |  |  |  |  |
| 4Competence in applying simple analytica                                                 |                                                  |  |  |  |  |  |
| 5- Many different methods ranging from institutional mandates to physical, chemical, and |                                                  |  |  |  |  |  |
|                                                                                          |                                                  |  |  |  |  |  |
|                                                                                          |                                                  |  |  |  |  |  |
|                                                                                          |                                                  |  |  |  |  |  |

9. Learning Outcomes, Teaching, Learning and Assessment Method

A-Cognitive goals.

A1. After completing the course, students must have a clear idea of groundwater, its characteristics, underground transmission methods, and appropriate methods for treating contaminated groundwater

A2. Finding appropriate solutions to all kinds of groundwater problems

A3. Attract and welcome undergraduate students to our Bachelor of Science program in Environmental Engineering, and to graduate B.S. students who are innovative problem solvers, who become leaders in their organizations, and who possess the knowledge and skills required for a wide range of careers and career changes.

B. The skills goals special to the course.

B1.Understand health and environmental issues related to groundwater

B2. The application of environmental concepts in the conservation of groundwater as an important water resource that must be preserved from contamination

B3.Concentrating on scientific research and its leading role in helping to serve the society and solving its problems through conducting application researches

Teaching and Learning Methods

More description of case studies and applications

Assessment methods

Homework related to problem solving

C. Affective and value goals

C1. Developing environmental concepts, including the preservation of groundwater as an important water resource

C2. Spreading environmental awareness in the community and trying to contribute to the preservation of the environment

C3.Prepare students for successful careers in environmental engineering

Teaching and Learning Methods

Intensive studies of regulations

Assessment methods

Case studies

D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

- D3. Articulate personal goals and evaluate progress towards their achievement
- D4.An ability to identify, formulate, and solve engineering problems

| 10. Cou | 10. Course Structure |      |                                 |                    |                                                                       |  |
|---------|----------------------|------|---------------------------------|--------------------|-----------------------------------------------------------------------|--|
| Week    | Hours                | ILOs | Unit/Module or<br>Topic Title   | Teaching<br>Method | Assessment<br>Method                                                  |  |
| 1       | 2                    |      | Introduction                    | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 2       | 2                    |      | Porous media<br>characteristics | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 3       | 2                    |      | Porous media<br>characteristics | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 4       | 2                    |      | Groundwater definition          | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 5       | 2                    |      | Darcy's Law                     | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 6       | 2                    |      | Darcy's Law                     | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |
| 7       | 2                    |      | Darcy's Law                     | Electronic         | Questions during the<br>lectures ,quiz, exam,<br>present in the class |  |

| 0  |   |                         |            |                       |
|----|---|-------------------------|------------|-----------------------|
| 8  | 2 | Aquifer system          | Electronic | Questions during the  |
|    |   |                         |            | lectures ,quiz, exam, |
|    |   |                         |            | present in the class  |
| 9  | 2 | A guifar avatama        | Electronic | Overtions during the  |
| 9  | 2 | Aquifer systems         | Electronic | Questions during the  |
|    |   |                         |            | lectures,quiz, exam,  |
|    |   |                         |            | present in the class  |
|    |   |                         |            |                       |
|    |   |                         |            |                       |
| 10 | 2 | General flow equation   | Electronic | Questions during the  |
|    |   | and its solution        |            | lectures ,quiz, exam, |
|    |   |                         |            | -                     |
|    |   |                         |            | present in the class  |
|    |   |                         |            |                       |
| 11 | 2 | General flow equation   | Electronic | Questions during the  |
|    |   | and its solution        |            | lectures, quiz, exam, |
|    |   |                         |            | present in the class  |
|    |   |                         |            |                       |
| 12 | 2 | General flow equation   | Electronic | Questions during the  |
|    |   | and its solution        |            | lectures ,quiz, exam, |
|    |   |                         |            | present in the class  |
|    |   |                         |            | present in the class  |
| 13 | 2 | Concred flow equation   | Electronic | Overtions during the  |
| 15 | 2 | General flow equation   | Electronic | Questions during the  |
|    |   |                         |            | lectures,quiz, exam,  |
|    |   |                         |            | present in the class  |
| 14 | 2 | Steady radial flow to a | Electronic | Questions during the  |
|    |   | well                    |            | lectures ,quiz, exam, |
|    |   |                         |            | present in the class  |
|    |   |                         |            | present in the class  |
| 15 | 2 | Steady radial flow to a | Electronic | Questions during the  |
|    |   | well                    |            | lectures ,quiz, exam, |
|    |   |                         |            | present in the class  |
| 16 | 2 | Steady radial flow to a | Electronic | Questions during the  |
|    |   | well                    |            | lectures, quiz, exam, |
|    |   |                         |            | nresent in the class  |
| 17 | 2 | Hydraulic parameters    | Electronic | Questions during the  |
|    |   | measurement             |            | lectures, quiz, exam, |
|    |   |                         |            | nresent in the class  |
| 18 | 2 | Hydraulic parameters    | Electronic | Questions during the  |
|    |   | measurement             |            | lectures ,quiz, exam, |
|    |   |                         |            | nresent in the class  |
| 19 | 2 | Groundwater             | Electronic | Questions during the  |
|    |   | contamination           |            | lectures, quiz, exam, |
| 20 |   |                         |            | nresent in the class  |
| 20 | 2 | Groundwater             | Electronic | Questions during the  |
|    |   | contamination           |            | lectures ,quiz, exam, |
| 21 | 2 |                         |            | nresent in the class  |
| 21 | 2 | Ground water remedial   | Electronic | Questions during the  |
|    |   | technologies            |            | lectures,quiz, exam,  |
|    |   |                         |            | nresent in the class  |

| 22  | 2 | Ground water remedial technologies | Electronic | Questions during the  |
|-----|---|------------------------------------|------------|-----------------------|
|     |   | teennologies                       |            | lectures ,quiz, exam, |
| 23  | 2 | Ground water remedial              | Electronic | Questions during the  |
|     |   | technologies                       |            | lectures,quiz, exam,  |
| 2.4 |   |                                    |            | nresent in the class  |
| 24  | 2 | Transport of                       | Electronic | Questions during the  |
|     |   | contaminants in pours' media       |            | lectures ,quiz, exam, |
| 2.5 |   |                                    |            | nresent in the class  |
| 25  | 2 | Transport of                       | Electronic | Questions during the  |
|     |   | contaminants in pours'             |            | lectures ,quiz, exam, |
|     |   | media                              |            | present in the class  |
| 26  | 2 | Advection dispersion               | Electronic | Questions during the  |
|     |   | relations                          |            | lectures ,quiz, exam, |
|     |   |                                    |            | nresent in the class  |
| 27  | 2 | Advection dispersion               | Electronic | Questions during the  |
| 21  | 2 | relations                          | Licetionic |                       |
|     |   | relations                          |            | lectures ,quiz, exam, |
| • • |   |                                    |            | nresent in the class  |
| 28  | 2 | Advection dispersion               | Electronic | Questions during the  |
|     |   | relations                          |            | lectures ,quiz, exam, |
|     |   |                                    |            | present in the class  |
| 29  | 2 | Advection dispersion               | Electronic | Questions during the  |
|     |   | relations                          |            | lectures, quiz, exam, |
|     |   |                                    |            | nresent in the class  |
| 30  | 2 | Advection dispersion               | Electronic | Questions during the  |
|     |   | relations                          |            | _                     |
|     |   | relations                          |            | lectures ,quiz, exam, |
|     |   |                                    |            | nresent in the class  |

| 11. Infrastructure                                                  |                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:                                          | <ol> <li>Unsaturated zone hydrology for scientists and<br/>engineers by James A. Tindall</li> <li>Handbook of complex environmental remedeiation<br/>problems by Kevin John Phillips</li> <li>Contaminants Hydrogeology by C.W.Fetter</li> <li>Fundamentals of groundwater by Franklin W.,<br/>Schwartz/Hubao Zhang</li> </ol> |
| 2. Main references (sources)                                        | Ground water by "Freeze"                                                                                                                                                                                                                                                                                                       |
| A- Recommended books and references (scientific journals, reports). |                                                                                                                                                                                                                                                                                                                                |

B-Electronic references, Internet sites...

12. The development of the curriculum plan

The development could concentrate on more applications and mathematical modeling of groundwater remediation.



## HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

### **Course instructor: Prof. Dr. Zainab Ziad Ismail**

## **COURSE SPECIFICATION**

This Course provides complete knowledge about the design and arrangements of the major industrial wastewater treatment units and techniques including physical, chemical, and biological methods.

| 1. Teaching Institution                                                                   | College of Engineering/University of<br>Baghdad |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------|--|--|--|
| 2. University Department/Centre                                                           | Department of Environmental Engineering         |  |  |  |
| 3. Course title/code                                                                      | Industrial wastewater treatment Techniques      |  |  |  |
| 4. Modes of Attendance offered                                                            | Two days/Week                                   |  |  |  |
| 5. Semester/Year                                                                          | Two semesters/Year                              |  |  |  |
| 6. Number of hours tuition (total)                                                        | 90 hours for each class (Total 180 h)           |  |  |  |
| 7. Date of production/revision of this 2023-2024                                          |                                                 |  |  |  |
| 8. Aims of the Course                                                                     |                                                 |  |  |  |
| 1- Understanding the basic concepts of wastewa                                            | ater treatment.                                 |  |  |  |
| 2- Recognizing the difference between domesti                                             | c and industrial wastewater characteristics.    |  |  |  |
| 3- Providing full knowledge of how to deal with                                           | n different types of industrial wastewater.     |  |  |  |
| 4- Learning how to select the suitable treatment unit based on wastewater characteristics |                                                 |  |  |  |
| 5- Learn the design and criteria of the most conventional treatment units.                |                                                 |  |  |  |

### 9. Learning Outcomes, Teaching, Learning and Assessment Method

### A- Cognitive goals.

A1. Upon completion of the two semesters, the students must be able to design and deal with different types of wastewater treatment units.

A2. Provides understanding environmental engineers capable of performing complete design of wastewater treatment plant.

A3. Encourage and welcome new students to the program of the department of Environmental Engineering as undergraduate and graduate students. Those students can potentially contribute in solving the environmental problems in particular those related to the industry. and they can act as leaders in their organizations. Also, they can offer their knowledge and skills in a wide range of updated carrier applications.

#### **B-** The skills goals special to the course.

B1. Articulate an understanding of relevant concepts that underlie environmental processes.

B2. Integrate and apply sophisticated perspectives from multiple disciplinary approaches that address complex industrial environmental problems.

B3. Design and conduct research on industrial environmental topics. Research could include a variety of methods including quantitative, qualitative, artistic, .... etc.

### **Teaching and Learning Methods**

Presenting real case studies and real environmental problems.

#### Assessment methods

- Home works.

- Classroom groups to design certain industrial treatment units which can solve environmental problems.

### C. Affective and value goals

- C1. Effective and logical approaches for the design of treatment units.
- C2. Knowledge of applicable design procedures of effective cost and efficient performance.
- C3. Provide the society and industry with open minded engineers with updated knowledge.

### **Teaching and Learning Methods**

Intensive class work and looking out for real industrial wastewater treatment plants.

#### Assessment methods

Applied case studies

# **D.** General and rehabilitative transferred skills (other skills relevant to employability and personal development)

D1. Both cognitive and non-cognitive skills- such as critical thinking, problem solving, collaboration, effective communication, motivation, persistence, and learning to learn.

D2. Skills also include creativity, innovation, and ethics that are important to later success and may be developed in formal or informal learning environments.

D3. Develop skills such as problem solving, critical thinking, communication, collaboration, and self-management - often referred to as "21st century skills."

| 10. Course Structure |       |                                     |                                                                                         |                    |                                                                           |
|----------------------|-------|-------------------------------------|-----------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|
| Week                 | Hours | ILOs                                | Unit/Module or<br>Topic Title                                                           | Teaching<br>Method | Assessment<br>Method                                                      |
| 1                    | 3     | Sources and<br>Properties of<br>IWW | Basic raw material<br>balance in industrial<br>processing                               | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 2                    | 3     | Sources and<br>Properties of<br>IWW | Compatibility of<br>industry and<br>municipality                                        | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 3                    | 3     | Sources and<br>Properties of<br>IWW | Characteristics of industrial wastes.                                                   | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 4                    | 3     | Sources and<br>Properties of<br>IWW | Characteristics of industrial wastes.                                                   | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 5                    | 3     | Management<br>of IWW                | The criteria for<br>selecting suitable<br>treatment techniques<br>of industrial wastes. | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 6                    | 3     | Management<br>of IWW                | Applications and basic<br>design of wastewater<br>treatment                             | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 7                    | 3     | Treatment of<br>IWW                 | Physical techniques<br>application/<br>sedimentation                                    | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 8                    | 3     | Treatment of<br>IWW                 | Physical techniques<br>application/ mixing                                              | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 9                    | 3     | Treatment of<br>IWW                 | Physical techniques<br>application/ filtration                                          | Class attendance   | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |

| 10 | 3 | Treatment of IWW    | Physical techniques<br>application/ air<br>stripping      | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
|----|---|---------------------|-----------------------------------------------------------|------------------|---------------------------------------------------------------------------|
| 11 | 3 | Treatment of IWW    | Physical techniques<br>application/ steam<br>stripping    | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 12 | 3 | Treatment of IWW    | Physical techniques<br>application/<br>flocculation       | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 13 | 3 | Treatment of IWW    | Physical techniques<br>application/ reverse<br>osmosis    | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 14 | 3 | Treatment of IWW    | Physical techniques<br>application/ adsorption<br>process | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 15 | 3 | Treatment of<br>IWW | Physical techniques<br>application/ A.C<br>adsorption     | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |

| 1 | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
|---|---|---------------------|------------------------------------|------------------|---------------------------------------------------------------------------|
| 2 | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 3 | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 4 | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 5 | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 6 | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 7 | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |

| 8  | 3 | Treatment of IWW    | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
|----|---|---------------------|------------------------------------|------------------|---------------------------------------------------------------------------|
| 9  | 3 | Treatment of<br>IWW | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 10 | 3 | Treatment of IWW    | Biological methods<br>applications | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 11 | 3 | Treatment of<br>IWW | Chemical methods<br>applications   | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 12 | 3 | Treatment of<br>IWW | Chemical methods<br>applications   | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 13 | 3 | Treatment of<br>IWW | Chemical methods<br>applications   | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 14 | 3 | Treatment of IWW    | Chemical methods<br>applications   | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 15 | 3 | Treatment of<br>IWW | Chemical methods<br>applications   | Class attendance | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |

| 11. Infrastructure           |                                                                                                                                                                                                          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:   | Industrial Water Pollution,<br>Origins, Characteristics, and Treatment<br>By Nelson L. Nemerow                                                                                                           |
| 2. Main references (sources) |                                                                                                                                                                                                          |
| references (scientific       | <ol> <li>1-Theory and practice of water and wastewater treatment.<br/>By Ronald L. Droste.</li> <li>2- International Journal of Waste Resources.</li> <li>3- Water and Wastewater Management.</li> </ol> |

| https://www.epa.gov/eg/industrial-effluent-guidelines | B-Electronic references, Internet sites | https://www.watertechonline.com/wastewater/article/1555<br>0541/wastewater-treatment-technologies-for-processing-<br>plants.<br>https://www.pseau.org/outils/ouvrages/wrc_wastewater_tr<br>eatment_technologies_a_basic_guide_2016.pdf<br>https://www.epa.gov/eg/industrial-effluent-guidelines |
|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

# 12. The development of the curriculum plan

This curriculum should be supported by several visits to real field industrial wastewater
# **TEMPLATE FOR COURSE SPECIFICATION**

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

## Course instructor: Prof. Dr. Zainab Ziad Ismail

# **COURSE SPECIFICATION**

This Course provides complete knowledge about the design and arrangements of the major industrial wastewater treatment units and techniques including physical, chemical, and biological methods.

| 1. Teaching Institution                                                                   | College of Engineering/University of Baghdad      |  |  |  |
|-------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|
| 2. University Department/Centre                                                           | Department of Environmental Engineering           |  |  |  |
| 3. Course title/code                                                                      | Industrial wastewater treatment Techniques        |  |  |  |
| 4. Modes of Attendance offered                                                            | Two days/Week (electronic class)                  |  |  |  |
| 5. Semester/Year                                                                          | Two semesters/Year                                |  |  |  |
| 6. Number of hours tuition (total)                                                        | 45 hours                                          |  |  |  |
| 7. Date of production/revision of this                                                    | 2023                                              |  |  |  |
| 8. Aims of the Course                                                                     |                                                   |  |  |  |
| 1- Understanding the basic concepts of wa                                                 | astewater treatment.                              |  |  |  |
| 2- Recognizing the difference between do                                                  | mestic and industrial wastewater characteristics. |  |  |  |
| 3- Providing full knowledge of how to deal with different types of industrial wastewater. |                                                   |  |  |  |
| 4- Learning how to select the suitable treatment unit based on wastewater characteristics |                                                   |  |  |  |
| 5- Learn the design and criteria of the most conventional treatment units.                |                                                   |  |  |  |
|                                                                                           |                                                   |  |  |  |
|                                                                                           |                                                   |  |  |  |

9. Learning Outcomes, Teaching, Learning and Assessment Method

## A- Cognitive goals.

A1. Upon completion of the two semesters, the students must be able to design and deal with different types of wastewater treatment units.

A2. Provides understanding environmental engineers capable of performing complete design of wastewater treatment plant.

A3. Encourage and welcome new students to the program of the department of Environmental Engineering as undergraduate and graduate students. Those students can potentially contribute in solving the environmental problems in particular those related to the industry. and they can act as leaders in their organizations. Also, they can offer their knowledge and skills in a wide range of updated carrier applications.

## **B-** The skills goals special to the course.

B1. Articulate an understanding of relevant concepts that underlie environmental processes.

B2. Integrate and apply sophisticated perspectives from multiple disciplinary approaches that address complex industrial environmental problems.

B3. Design and conduct research on industrial environmental topics. Research could include a variety of methods including quantitative, qualitative, artistic, .... Etc.

## Teaching and Learning Methods

Presenting real case studies and real environmental problems.

### Assessment methods

- Home works.

- Classroom groups to design certain industrial treatment units which can solve environmental problems.

### C. Affective and value goals

- C1. Effective and logical approaches for the design of treatment units.
- C2. Knowledge of applicable design procedures of effective cost and efficient performance.
- C3. Provide the society and industry with open minded engineers with updated knowledge.

### Teaching and Learning Methods

Intensive class work and looking out for real industrial wastewater treatment plants.

Assessment methods

Applied case studies

# D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)

D1. Both cognitive and non-cognitive skills- such as critical thinking, problem solving, collaboration, effective communication, motivation, persistence, and learning to learn.

D2. Skills also include creativity, innovation, and ethics that are important to later success and may be developed in formal or informal learning environments.

D3. Develop skills such as problem solving, critical thinking, communication, collaboration, and self-management - often referred to as "21st century skills."

| 10. Cour | 10. Course Structure |                                     |                                                                                         |                    |                                                                           |
|----------|----------------------|-------------------------------------|-----------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|
| Week     | Hour<br>s            | ILOs                                | Unit/Module or<br>Topic Title                                                           | Teaching<br>Method | Assessment<br>Method                                                      |
| 1        | 3                    | Sources and<br>Properties of<br>IWW | Basic raw material<br>balance in industrial<br>processing                               | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 2        | 3                    | Sources and<br>Properties of<br>IWW | Compatibility of<br>industry and<br>municipality                                        | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 3        | 3                    | Sources and<br>Properties of<br>IWW | Characteristics of industrial wastes.                                                   | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 4        | 3                    | Sources and<br>Properties of<br>IWW | Characteristics of industrial wastes.                                                   | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 5        | 3                    | Management<br>of IWW                | The criteria for<br>selecting suitable<br>treatment techniques of<br>industrial wastes. | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 6        | 3                    | Management<br>of IWW                | Applications and basic<br>design of wastewater<br>treatment technologies.               | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 7        | 3                    | Treatment of<br>IWW                 | Physical techniques<br>application/<br>sedimentation                                    | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 8        | 3                    | Treatment of<br>IWW                 | Physical techniques<br>application/ mixing                                              | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 9        | 3                    | Treatment of<br>IWW                 | Physical techniques<br>application/ filtration                                          | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 10       | 3                    | Treatment of<br>IWW                 | Physical techniques<br>application/ air<br>stripping                                    | Electronic         | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |

| 11 | 3 | Treatment of<br>IWW | Physical techniques<br>application/ steam<br>stripping    | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
|----|---|---------------------|-----------------------------------------------------------|------------|---------------------------------------------------------------------------|
| 12 | 3 | Treatment of IWW    | Physical techniques<br>application/<br>flocculation       | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 13 | 3 | Treatment of IWW    | Physical techniques<br>application/ reverse<br>osmosis    | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 14 | 3 | Treatment of IWW    | Physical techniques<br>application/ adsorption<br>process | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 15 | 3 | Treatment of IWW    | Physical techniques<br>application/ A.C<br>adsorption     | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
|    |   | Treatment of IWW    | Break                                                     |            |                                                                           |
| 1  | 3 | Treatment of IWW    | Biological methods<br>applications                        | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 2  | 3 | Treatment of IWW    | Biological methods applications                           | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 3  | 3 | Treatment of IWW    | Biological methods applications                           | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 4  | 3 | Treatment of IWW    | Biological methods<br>applications                        | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 5  | 3 | Treatment of IWW    | Biological methods applications                           | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 6  | 3 | Treatment of<br>IWW | Biological methods<br>applications                        | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 7  | 3 | Treatment of<br>IWW | Biological methods<br>applications                        | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 8  | 3 | Treatment of<br>IWW | Biological methods<br>applications                        | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 9  | 3 | Treatment of<br>IWW | Biological methods<br>applications                        | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |

| 10 | 3 | Treatment of IWW    | Biological methods<br>applications | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
|----|---|---------------------|------------------------------------|------------|---------------------------------------------------------------------------|
| 11 | 3 | Treatment of<br>IWW | Chemical methods<br>applications   | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 12 | 3 | Treatment of<br>IWW | Chemical methods<br>applications   | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 13 | 3 | Treatment of<br>IWW | Chemical methods applications      | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 14 | 3 | Treatment of<br>IWW | Chemical methods applications      | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |
| 15 | 3 | Treatment of<br>IWW | Chemical methods<br>applications   | Electronic | Questions during the<br>lectures, quiz, exams,<br>presenting in the class |

| 11. Infrastructure                                                  |                                                                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Books Required reading:                                          | Industrial Water Pollution,<br>Origins, Characteristics, and Treatment<br>By Nelson L. Nemerow                                                                                                                                                                                                  |
| 2. Main references (sources)                                        |                                                                                                                                                                                                                                                                                                 |
| A- Recommended books and references (scientific journals, reports). | <ol> <li>1-Theory and practice of water and wastewater treatment.</li> <li>By Ronald L. Droste.</li> <li>2- International Journal of Waste Resources.</li> <li>3- Wastewater Management journal.</li> </ol>                                                                                     |
| B-Electronic references, Internet sites                             | https://www.watertechonline.com/wastewater/article/1555<br>0541/wastewater-treatment-technologies-for-processing-<br>plants.<br>https://www.pseau.org/outils/ouvrages/wrc_wastewater_tr<br>eatment_technologies_a_basic_guide_2016.pdf<br>https://www.epa.gov/eg/industrial-effluent-guidelines |

# 12. The development of the curriculum plan

This curriculum should be supported by several visits to real field industrial wastewater treatment

# **TEMPLATE FOR PROGRAMME SPECIFICATION**

# HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

Course Instructor : Assist. Prof. Dr. Abeer I. Alwared

# **PROGRAMME SPECIFICATION**

Give basic concepts for students about the details of water supply system and sewerage

| 1. Teaching Institution                                                                              | College of Engineering                  |  |  |  |
|------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| 2. University Department/Centre                                                                      | Department of Environmental Engineering |  |  |  |
| 3. Course title/code                                                                                 | Water Supply and Sewerage               |  |  |  |
| 4. Modes of Attendance offered                                                                       | 2 days per week + 1 day lab             |  |  |  |
| 5. Semester/Year                                                                                     | Year                                    |  |  |  |
| 6. Number of hours tuition (total)                                                                   | 150                                     |  |  |  |
| 7. Date of production/revision of this specification                                                 | 2023                                    |  |  |  |
| 8. Aims of the Course                                                                                |                                         |  |  |  |
| 1- The course explains the impact of various water quality parameters on human health and ecosystem. |                                         |  |  |  |
| 2- Design, operate and maintain working treatment systems                                            |                                         |  |  |  |

3- The student will be able to apply the knowledge gained from the subject in EIA studies for water component and water pollution control strategies

# 9. Learning Outcomes, Teaching, Learning and Assessment Methods

#### A. Cognitive goals

- A1. Student should be able to make technology choice to deal with water quality issues
- A2. Operate and maintain working treatment systems and do troubleshooting of the problems in these systems
- A3. Operate and maintain working treatment systems and do troubleshooting of the problems in these systems

B. The skills goals special to the Course

B1.Understand water supply requirement , quantity and quality of water supply

B2.Design ,construction and operation of water and wastewater systems

B3. understanding the methodology test and analysis water and waste water to know water quality characteristics

## **Teaching and Learning Methods**

Classroom teaching will involve black board, power point presentations, and case study analysis.

### Assessment methods

Homework related to problem solving

- C. Affective and value goals
- C1. Optimization of solid waste transport, treatment and disposal techniques
- C2. Economics of the onsite vs. offsite waste management options
- C3. Prepare students for successful careers in environmental engineering

## **Teaching and Learning Methods**

Intensive studies of regulations

## Assessment methods

Case study

# **D.** General and Transferable Skills (other skills relevant to employability and personal development)

D1. Become more effective, independent and confident self-directed learners

D2. Improve their general skills for study and career management

D3. Articulate personal goals and evaluate progress towards their achievement

D4. An ability to identify, formulate, and solve engineering problems

|      |             | -<br>-<br>-                   | 10. Course Struct                                                                                                           | ure                                                                                                                            |                                                                       |
|------|-------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Week | Hours       | ILOs                          | Unit/Module or<br>Topic Title                                                                                               | Teaching<br>Method                                                                                                             | Assessment<br>Method                                                  |
| 1    | 3<br>+<br>2 | Introduction<br>+<br>Lab      | Introduction<br>+<br>Impurities of water                                                                                    | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+<br>Lab       | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 2    | 3<br>+<br>2 | Quantity of water<br>+<br>Lab | Quantity of water and<br>sewage: Consumption<br>for various purposes,<br>forecasting population<br>+<br>Impurities of water | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+<br>Lab       | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 3    | 3<br>+<br>2 | Quantity of water<br>+<br>Lab | Quantity of water and<br>sewage: Consumption<br>for various purposes,<br>forecasting population<br>+<br>turbidity           | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+<br>Lab       | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 4    | 3<br>+<br>2 | Quantity of water<br>+<br>Lab | Quantity of water and<br>sewage: Consumption<br>for various purposes,<br>forecasting population<br>+<br>Turbidity           | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>Class<br>+ Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 5    | 3<br>+<br>2 | Quantity of water<br>+<br>Lab | Quantity of water and<br>sewage: Consumption<br>for various purposes,<br>forecasting population<br>+<br>Color               | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

|    |             |                                                                       | Intelies total                                                                  | Classroom teaching                                                                                                             |                                                                       |
|----|-------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 6  | 3<br>+<br>2 | Collection of water<br>+<br>Lab                                       | Intakes, intakes of<br>impounding reservoirs,<br>river intakes<br>+ Color       | will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab                                | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 7  | 3<br>+<br>2 | Collection of water<br>+<br>Lab                                       | Intakes, intakes of<br>impounding reservoirs,<br>river intakes<br>+ Total solid | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 8  | 3<br>+<br>2 | Quality and<br>distribution of water<br>supplies<br>+<br>Total solids | Quality and distribution<br>of water supplies<br>+<br>Total solids              | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 9  | 3<br>+<br>2 | Quality and<br>distribution of water<br>supplies<br>+<br>Lab          | Quality and distribution<br>of water supplies<br>+<br>Lab exam                  | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 10 | 3<br>+<br>2 | Quality and<br>distribution of water<br>supplies<br>+ Lab             | Quality and distribution<br>of water supplies<br>+ Conductivity                 | Class Classroom<br>teaching will involve<br>black board, power<br>point presentations,<br>and case study<br>analysis. + Lab    | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 11 | 3<br>+2     | Treatment of water +<br>Lab                                           | Treatment of water<br>+conductivity                                             | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +<br>Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 12 | 3<br>+<br>2 | Treatment of water +<br>Lab                                           | Treatment of water<br>+pH                                                       | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 13 | 3           | Treatment of water                                                    | Treatment of water+<br>pH                                                       | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 14 | 3<br>+<br>2 | Treatment of water+<br>Lab                                            | Treatment of water +<br>Lab                                                     | Class Classroom<br>teaching will involve<br>black board, power<br>point presentations,<br>and case study<br>analysis.<br>+ Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 15 | 3<br>+<br>2 | Treatment of water+<br>Lab                                     | Treatment of water+<br>Lab                                            | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|-------------|----------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 16 | 3<br>+<br>2 | Amount of storm<br>sewage +<br>Acidity                         | Amount of storm<br>sewage +<br>Acidity                                | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 17 | 3<br>+<br>2 | Sewer pipes and<br>appurtenances +Lab                          | Sewer pipes and<br>appurtenances + Acidity                            | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 18 | 3<br>+<br>2 | Design construction<br>and maintenance of<br>sewer system+ Lab | Design construction and<br>maintenance of sewer<br>system+ Alkalinity | Class Classroom<br>teaching will involve<br>black board, power<br>point presentations,<br>and case study<br>analysis.<br>+ Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 19 | 3<br>+<br>2 | Characteristic of<br>sewage + Lab                              | Characteristic of sewage<br>+ Alkalinity                              | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 20 | 3<br>+<br>2 | Characteristic of<br>sewage + Lab                              | Characteristic of sewage<br>+Chloride                                 | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +<br>Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 21 | 3<br>+<br>2 | Sewage treatment<br>and disposal+ Lab                          | Sewage treatment and<br>disposal + Chloride                           | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 22 | 3<br>+<br>2 | Sewage treatment<br>and disposal+ Lab                          | Sewage treatment and<br>disposal+ Hardness                            | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +<br>Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 23 | 3<br>+<br>2 | Sewage treatment<br>and disposal+ Lab                          | Sewage treatment and<br>disposal+ Hardness                            | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 24 | 3<br>+<br>2 | Sewage treatment<br>and disposal+ Lab                    | Sewage treatment and<br>disposal+ Water<br>stability                     | Class Classroom<br>teaching will involve<br>black board, power<br>point presentations,<br>and case study<br>analysis.<br>+ Lab | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
|----|-------------|----------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 25 | 3<br>+<br>2 | preliminary, primary<br>and secondary<br>treatment + Lab | preliminary, primary<br>and secondary<br>treatment + Water<br>stability  | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 26 | 3<br>+<br>2 | preliminary, primary<br>and secondary<br>treatment + Lab | preliminary, primary<br>and secondary<br>treatment + Dissolved<br>oxygen | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 27 | 3<br>+<br>2 | preliminary, primary<br>and secondary<br>treatment + Lab | preliminary, primary<br>and secondary<br>treatment + Dissolved<br>oxygen | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis. +<br>Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 28 | 3<br>+<br>2 | preliminary, primary<br>and secondary<br>treatment + Lab | preliminary, primary<br>and secondary<br>treatment + COD test            | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 29 | 3<br>+<br>2 | preliminary, primary<br>and secondary<br>treatment+ Lab  | preliminary, primary<br>and secondary<br>treatment+ BOD test             | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |
| 30 | 3<br>+<br>2 | Review and exam                                          | Review and exam                                                          | Classroom teaching<br>will involve black<br>board, power point<br>presentations, and<br>case study analysis.<br>+ Lab          | Questions during the<br>lectures ,quiz, exam,<br>present in the class |

| 11. Infrastructure           |                                                                                        |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| 1. Books Required reading:   | Water Supply and Wastewater Engineering (Part 1 and 2) by:<br>D.Lal and A. K. Upadhyay |  |  |  |
| 2. Main references (sources) | Water Supply and Sewerage by: E. W. Steel and T. J. McGhee                             |  |  |  |

| A- Recommended books and<br>references (scientific journals,<br>reports). | Desalination and water treatment                     |
|---------------------------------------------------------------------------|------------------------------------------------------|
| <b>B-Electronic references, Internet sites</b>                            | https://www.unicef.org/wash/files/water_handbook.pdf |
|                                                                           |                                                      |

Г